
"Programming Basics with C#": Free Book + Video Course

Author: Svetlin Nakov and Team

ISBN: 978-619-00-0902-3

Pages: 400

Language: English

Publisher: Faber, Veliko Tarnovo

Sofia, 2019

Book “Programming Basics with C#” (English)

Book “Programming Basics with C#” (Bulgarian)

Book “Programming Basics with Java” (Bulgarian)

Book “Programming Basics with JavaScript” (Bulgarian)

Book “Programming Basics with Python” (Bulgarian)

Book “Programming Basics with C++” (Bulgarian)

Books “Introduction to Programming with C# and Java”

“Software University” Foundation

SoftUni (Software University)

SoftUni Blog – Learn to Code

SoftUni Judge System – Automated Code Evaluation

Svetlin Nakov – official web site, programming courses and lessons

Tags: programming; book; programming book; book programming; free book; free; e-book; video lessons;
programming video lessons; lessons programming; C#; C# book; book C#; coding; programming code; C# book

basics; C# programming basics; C# programming book; programming basics C# book; C# video lessons; C#
programming lessons; video lessons programming C#; computer programming; programming concepts; basics of
programming; textbook; tutorial; intro C#; CSharp; si sharp book; learn programming; learn C#; lessons C#; C#
lessons; learn coding; learn programming; how to program; coder; programmer; software developer; practical

programming; programming techniques; logical thinking; algorithmic thinking; coding; coding skills; programming
skills; programming language; programming fundamentals; programming first steps; source code; open source;
source code; open source; compiler; debugger; debugging; Visual Studio; IDE; development environment; code
snippets; .NET; .NET Framework; .NET Core; data; data types; variables; variable scope; operators; expressions;

calculations; statements; console; console input / output; console application; text formatting; conditional
statements; if operator; if constructions; if; if-else; switch-case; logical operators; logical AND; logical OR; logical
NOT; loops; while; do-while; for-loop; foreach-loop; nested loops; infinite loops; functions; methods; invoking

methods; parameters; arguments; try-catch; error handling; programming problems, practical problems, problem
solving; problems and solutions; writing code; code testing; exercises; problems; tasks; solutions; programming
guidelines; programming exercises; skillful developer; skillful programmer; high-quality code; naming identifiers;

code formatting; Nakov; Svetlin Nakov; Software University; SoftUni; code camp; coding academy; software
academy; video academy; interactive training; interactive coding course; interactive programming lessons; online

judge; judge system; softuni.org; GUI apps; Web apps; ISBN 978-619-00-0902-3; ISBN 9786190009023

Programming Basics with C# Book – front cover

https://csharp-book.softuni.org/
https://csharp-book.softuni.bg/
https://java-book.softuni.bg/
https://js-book.softuni.bg/
https://python-book.softuni.bg/
https://cpp-book.softuni.bg/
http://introprogramming.info/
http://softuni.foundation/
https://softuni.org/
https://blog.softuni.org/
http://judge.softuni.org/
https://nakov.com/
http://nakov.com/
https://softuni.bg/
http://softuni.bg/
https://csharp-book.softuni.org

Contents

Contents ... 3

Table of Contents .. 7

Preface .. 13

Chapter 1. First Steps in Programming ... 27

Chapter 2.1. Simple Calculations ... 61

Chapter 2.2. Simple Calculations – Exam Problems .. 93

Chapter 3.1. Simple Conditions ... 107

Chapter 3.2. Simple Conditions – Exam Problems ... 135

Chapter 4.1. More Complex Conditions ... 147

Chapter 4.2. More Complex Conditions – Exam Problems .. 171

Chapter 5.1. Loops (Repetitions) .. 189

Chapter 5.2. Loops – Exam Problems ... 209

Chapter 6.1. Nested Loops ... 223

Chapter 6.2. Nested Loops – Exam Problems .. 243

Chapter 7.1. More Complex Loops.. 255

Chapter 7.2. More Complex Loops – Exam Problems ... 287

Chapter 8.1. Practical Exam Preparation – Part I ... 297

Chapter 8.2. Practical Exam Preparation – Part II .. 323

Chapter 9.1. Problems for Champions – Part I... 337

Chapter 9.2. Problems for Champions – Part II ... 349

Chapter 10. Methods .. 363

Chapter 11. Tricks and Hacks .. 391

Conclusion .. 403

"Programming Basics with C#" Book and Video Lessons

The free book "Programming Basics with C#" introduces the readers to writing programming code at
beginner level (variables and data, conditional statements, loops and methods) using the C# language.
It combines tutorial-style learning content with video lessons, code examples and a lot of practical
coding exercises with automated online evaluation (judge) system to ensure efficient learning.

Watch the promo video about this book and video lessons: https://youtu.be/_F606F3OgmQ.

Brief information about this edition:

• Title: Programming Basics with C#
• Authors: Svetlin Nakov & Team
• ISBN: 978-619-00-0902-3
• Edition: Faber Publishing, Sofia, 2019
• License: CC-BY-SA
• Source code: https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN

All authors, editors, translators and contributors: Alexander Krastev, Alexander Lazarov, Angel
Dimitriev, Bilyana Borislavova, Daniel Tsvetkov, Dimiter Tatarski, Dimo Dimov, Diyan Tonchev, Elena
Rogleva, Hristiyan Hristov, Hristo Hristov, Iskra Nikolova, Ivelin Kirilov, Julieta Atanasova, Kalin
Primov, Kalina Milanova, Karina Cholakova, Kristiyan Pamidov, Lyuboslav Lyubenov, Marieta Petrova,
Marina Shideroff, Mirela Damyanova, Nelly Karaivanova, Nikolay Bankin, Nikolay Dimov, Pavlin
Petkov, Peter Ivanov, Petko Dyankov, Preslav Mihaylov, Rositsa Nenova, Ruslan Philipov, Stefka
Vasileva, Svetlin Nakov, Teodor Kurtev, Tonyo Zhelev, Tsvetan Iliev, Vasko Viktorov, Ventsislav
Petrov, Yanitsa Valeva, Yulian Linev, Zahariya Pehlivanova, Zhivko Nedylakov.

This book is available in several versions in different programming languages:

• Programming Basics with C# (English)

• Programming Basics with C# (Bulgarian)

• Programming Basics with Java (Bulgarian)

• Programming Basics with JavaScript (Bulgarian)

• Programming Basics with Python (Bulgarian)

• Programming Basics with C++ (Bulgarian)

Enjoy reading and sign up for the Practical Free Training Course "Programming Basics"
(https://softuni.org) coming together with this book, because programming is learned by practice,
code writing and solving many, many problems, not just by reading!

https://youtu.be/_F606F3OgmQ
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN
https://csharp-book.softuni.org/
https://csharp-book.softuni.bg/
https://java-book.softuni.bg/
https://js-book.softuni.bg/
https://python-book.softuni.bg/
https://cpp-book.softuni.bg/
https://softuni.org/
https://softuni.org/

“Programming Basics with C#”
Book and Video Lessons

Svetlin Nakov and Team

Alexander Krastev

Alexander Lazarov

Angel Dimitriev

Bilyana Borislavova

Daniel Tsvetkov

Dimiter Tatarski

Dimo Dimov

Diyan Tonchev

Elena Rogleva

Hristiyan Hristov

Hristo Hristov

Iskra Nikolova

Ivelin Kirilov

Julieta Atanasova

Kalin Primov

Kalina Milanova

Karina Cholakova

Kristiyan Pamidov

Lyuboslav Lyubenov

Marieta Petrova

Marina Shideroff

Mirela Damyanova

Nelly Karaivanova

Nikolay Bankin

Nikolay Dimov

Pavlin Petkov

Peter Ivanov

Petko Dyankov

Preslav Mihaylov

Rositsa Nenova

Ruslan Philipov

Stefka Vasileva

Svetlin Nakov

Teodor Kurtev

Tonyo Zhelev

Tsvetan Iliev

Vasko Viktorov

Ventsislav Petrov

Yanitsa Valeva

Yulian Linev

Zahariya Pehlivanova

Zhivko Nedylakov

ISBN: 978-619-00-0902-3

https://csharp-book.softuni.org

Sofia, 2019

https://csharp-book.softuni.org/

“Programming Basics with C#” Book and Video Lessons

© Svetlin Nakov and Team, 2019

First Edition, September 2019

This book and video lessons are distributed freely under the CC-BY-SA open source license, which
defines the following rights and obligations:

• Sharing – you can copy and distribute the book and videos freely in any format or media.

• Adaptation – you can copy, remix and modify portions of this book and video lessons and
produce new content based on them.

• Attribution – when you use portions of this book and video lessons you should attribute the
original source, along with link to it and this license, but not in any way that suggests the licensor
endorses you or your use.

• Share Alike – if you remix, transform, or build upon this book and video lessons, you must
distribute your contributions under the same license as the original.

All trademarks used in this book are the property of their respective owners.

Publisher: Faber Publishing, Veliko Tarnovo

ISBN: 978-619-00-0902-3

Official Web Site: https://csharp-book.softuni.org

Official Facebook Page: https://fb.com/IntroProgrammingBooks

Cover: Marina Shideroff – https://behance.net/marinashideroff

Source Code: https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN

https://creativecommons.org/licenses/by-sa/4.0/
https://csharp-book.softuni.org/
https://fb.com/IntroProgrammingBooks
https://behance.net/marinashideroff
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN

Table of Contents

Contents ... 3

Table of Contents .. 7

Preface .. 13

Video: Book + Video Course Overview .. 13

The Book Uses C# and Visual Studio .. 13

Official Textbook at SoftUni ... 13

Who Is This Book Intended for? ... 13

Why Did We Choose C#? .. 14

Learning Resources: Code + Videos + Exercises + Judge .. 14

Programming Is Learned by Writing, Not Reading! .. 14

The Software University (SoftUni) .. 15

The Automated Judge System ... 16

How to Become a Software Developer? .. 17

More About the Book .. 22

Chapter 1. First Steps in Programming ... 27

Video: Chapter Overview.. 27

Introduction to Coding by Examples .. 27

Computer Programs – Concepts... 28

Languages, Compilers, Interpreters and Environments .. 29

Runtime Environments, Low-Level and High-Level Languages .. 31

Computer Programs – Examples ... 33

Development Environments (IDE) and Visual Studio .. 34

Example: Creating a Console Application "Hello C#" .. 39

Typical Mistakes in C# Programs .. 43

Exercises: First Steps in Coding ... 45

Lab: Graphical and Web Applications .. 51

Chapter 2.1. Simple Calculations ... 61

Video: Chapter Overview.. 61

Introduction to Simple Calculations by Examples ... 61

The System Console ... 62

Reading Integers from the Console .. 62

Example: Calculating a Square Area ... 63

Data Types and Variables ... 64

Declaring and Using Variables ... 64

Reading Floating Point Numbers from the Console .. 65

Reading a Text from the Console ... 65

Printing and Formatting Text and Numbers... 66

Arithmetic Operations .. 68

Concatenating Text and Numbers .. 70

Numerical Expressions ... 70

8 Programming Basics with C#

Exercises: Simple Calculations... 72

Lab: GUI Applications with Numerical Expressions ... 87

Useful Web Sites for C# Developers .. 91

Chapter 2.2. Simple Calculations – Exam Problems ... 93

Simple Calculations – Quick Review ... 93

Exam Problems .. 94

Chapter 3.1. Simple Conditions ... 107

Video: Chapter Overview ... 107

Introduction to Simple Conditions by Examples .. 107

Comparing Numbers .. 107

Simple If Conditions ... 108

If-Else Conditions – Examples... 111

Variable Scope ... 112

Sequence of If-Else Conditions .. 113

Debugging: Simple Operations with Debugger .. 114

Exercises: Simple Conditions ... 115

Lab: GUI (Desktop) Application – Currency Converter .. 130

Chapter 3.2. Simple Conditions – Exam Problems .. 135

Simple Conditions – Quick Review .. 135

Problem: Transportation Price .. 135

Problem: Pipes in Pool ... 137

Problem: Sleepy Tom Cat ... 139

Problem: Harvest .. 141

Problem: Firm .. 143

Chapter 4.1. More Complex Conditions .. 147

Video: Chapter Overview ... 147

Introduction to Complex Conditions by Examples .. 147

Nested If-Else Conditions .. 147

More Complex Conditions ... 150

Logical "AND" .. 151

Logical "OR" ... 153

Logical Negation (NOT) .. 154

More Complex Conditions – Examples .. 154

Switch-Case Conditional Statement .. 158

Exercises: More Complex Conditions ... 160

Lab: * GUI (Desktop) Application: Point and Rectangle ... 164

Chapter 4.2. More Complex Conditions – Exam Problems .. 171

More Complex Conditions – Quick Review .. 171

Problem: On Time for the Exam ... 172

Problem: Trip ... 175

Problem: Operations with Numbers .. 178

Table of Contents 9

Problem: Game Tickets ... 181

Problem: Hotel Room .. 184

Chapter 5.1. Loops (Repetitions) .. 189

Video: Chapter Overview... 189

Introduction to Simple Loops by Examples ... 189

For Loops (Repeating Code Blocks) .. 190

Example: Numbers from 1 to 100 ... 190

Example: Numbers up to 1000, Ending by 7 .. 191

Example: All Latin Letters ... 192

Code Snippet for the for Loop in Visual Studio ... 192

Exercises: Loops (Repetitions) ... 193

Lab: Turtle Graphics GUI Application ... 201

Exercises: Turtle Graphics .. 206

Chapter 5.2. Loops – Exam Problems ... 209

For Loops – Quick Review ... 209

Problem: Histogram ... 209

Problem: Smart Lilly ... 213

Problem: Back to the Past .. 215

Problem: Hospital ... 217

Problem: Division without Remainder .. 220

Problem: Logistics .. 221

Chapter 6.1. Nested Loops ... 223

Video: Chapter Overview... 223

Introduction to Nested Loops by Examples .. 223

Nested Loops – Concepts ... 224

Exercises: Drawing Figures .. 229

Lab: Drawing Ratings in Web .. 236

Chapter 6.2. Nested Loops – Exam Problems .. 243

Nested Loops – Quick Review ... 243

Problem: Drawing a Fort .. 243

Problem: Butterfly .. 245

Problem: "Stop" Sign .. 247

Problem: Arrow ... 249

Problem: Axe ... 251

Chapter 7.1. More Complex Loops.. 255

Video: Chapter Overview... 255

Introduction to More Complex Loops by Examples ... 255

For Loop with Step .. 256

While Loop ... 259

Greatest Common Divisor (GCD) .. 261

Do-While Loop ... 262

10 Programming Basics with C#

Infinite Loops with Break.. 264

Nested Loops and Break .. 267

Handling Errors: Try-Catch .. 269

Exercises: More Complex Loops .. 271

Lab: Web Application with Complex Loops .. 276

Chapter 7.2. More Complex Loops – Exam Problems .. 287

More Complex Loops – Quick Review ... 287

Problem: Dumb Passwords Generator ... 287

Problem: Magic Numbers ... 289

Problem: Stop Number ... 292

Problem: Special Numbers ... 294

Problem: Digits .. 294

Chapter 8.1. Practical Exam Preparation – Part I .. 297

Video: Chapter Overview ... 297

The "Programming Basics" Practical Exam ... 297

Simple Calculations – Problems .. 297

Simple Conditions – Problems .. 301

Complex Conditions – Problems .. 304

Simple Loops – Problems ... 308

Drawing Figures – Problems ... 312

Nested Loops – Problems .. 316

Practical Exam Preparation – Summary .. 321

Chapter 8.2. Practical Exam Preparation – Part II ... 323

Types of Exam Problems .. 323

Problem: Distance .. 323

Problem: Changing Tiles ... 326

Problem: Flowers Shop ... 328

Problem: Grades ... 330

Problem: Christmas Hat .. 332

Problem: Letters Combination .. 334

Chapter 9.1. Problems for Champions – Part I .. 337

More Complex Problems on the Studied Material .. 337

Problem: Crossing Sequences ... 337

Problem: Magic Dates ... 341

Problem: Five Special Letters .. 344

Chapter 9.2. Problems for Champions – Part II ... 349

More Complex Problems on the Studied Material .. 349

Problem: Passion Shopping Days ... 349

Problem: Numerical Expression .. 353

Problem: Bulls and Cows .. 357

Chapter 10. Methods ... 363

Table of Contents 11

Introduction by Examples .. 363

What Is a "Method"? ... 364

Methods with Parameters .. 368

Returning a Result from a Method .. 372

Methods Returning Multiple Values.. 375

Method Overloading ... 377

Nested Methods (Local Functions) .. 380

Naming Methods .. 381

Good Practices When Working with Methods .. 382

Exercises: Methods .. 383

Chapter 11. Tricks and Hacks .. 391

Code Formatting .. 391

Naming Code Elements .. 393

Shortcuts in Visual Studio .. 394

Code Snippets in Visual Studio ... 394

Code Debugging Techniques .. 398

Tricks for C# Developers ... 400

What We Learned in This Chapter? .. 402

Conclusion .. 403

Developer Skills .. 403

This Book is Only the First Step! .. 403

How to Proceed After This Book? ... 403

Study Software Engineering in SoftUni .. 404

Study Software Engineering in Your Own Way ... 406

Recommended Resources for Developers .. 406

https://softuni.org

Preface
The book "Programming Basics with C#" introduces the readers with writing programming code at a
beginners’ level (basic coding skills), working with development environment (IDE), using variables and
data, operators and expressions, working with the console (reading input data and printing output),
using conditional statements (if, if-else, switch-case), loops (for, while, do-while, foreach)
and methods (declaring and calling methods, passing parameters, and returning values).

Video: Book + Video Course Overview
Watch a video lesson about what shall we learn from this book and video course about basics of
programming: https://youtu.be/H6TWSOhav9I.

The Book Uses C# and Visual Studio
This book and video lessons coming with it, teach basic coding skills, using the programming language
C# and the development environment Visual Studio. All examples are given in C#, which is a modern,
general purpose programming language, a good choice for beginners.

This book only gives you the first steps to programming. It covers very basic skills that
you must develop for years, in order to reach a high enough level to start working as a
programmer.

Official Textbook at SoftUni
This book is the official textbook for the free Programming Basics course for absolute beginners at
the Software University (SoftUni) – https://softuni.org. The curriculum provides basic training for a
deeper study of programming and prepares readers for the entrance exam in SoftUni.

The book is also used as unofficial textbook for school-level programming courses in the high schools,
studying professions like "Programmer", "Application Programmer" and "System Programmer", as well
as an additional teaching tool in the initial programming courses at the secondary schools,
mathematical and professional high schools.

Who Is This Book Intended for?
That book is suitable for absolute beginners in programming who want to try what programming is
and learn the main constructions for writing programming code that are used in software
development, regardless of the programming language and the technologies used. The book gives a
solid basis of practical skills that you can use in any future training in programming and software
development.

For anyone who hadn't passed the free course on Programming Basics in SoftUni, we specifically
recommend to sign up for it completely free, because one learns programming by doing it, not by
reading it! During the course you will get free access to lessons, explanations and demonstrations on
site or online (such as video tutorials), a lot of practice and code writing, help with the task solutions
after each topic, access to trainers, assistants and mentors, as well as forums and discussion groups
for any questions, access to a community of thousands of people who are new in programming, and
any other help that a beginner might need.

The free course for beginners in SoftUni is suitable for school students (of age 10+), university
students and workers having any other professions, who want to gain technical knowledge and check
if programming is what they like to do and understand if they would like to develop in the software
development field.

https://youtu.be/H6TWSOhav9I
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
https://visualstudio.microsoft.com/
https://softuni.org/
https://softuni.org/
https://softuni.org/

14 Programming Basics with C#

A new group starts each month. The "Programming Basics" course at SoftUni is organized regularly
using a few different programming languages as basis. So, just check it out! The course is free, and
you can quit any time you like. Signing up for free on-site or online training is available via the SoftUni
application form: https://softuni.org.

Why Did We Choose C#?
For this book, we choose the C# language because it is a modern programming language for high-
level programming, open source, easy to learn and suitable for beginners. Using C# is widespread,
with a well-developed ecosystem, numerous libraries and technology frameworks, and accordingly, it
gives many perspectives for development. C# combines paradigms of procedural, object-oriented and
functional programming in a modern way with easy syntax. In this book, we will use C# language and
Visual Studio development environment, which are available for free from Microsoft.

As we will explain later, the programming language that we start with, does not make a significant
difference, but we still need to use some programming language, and in this book we choose C#
specifically. The book can also be found mirrored in other programming languages such as Java and
JavaScript (see https://csharp-book.softuni.org).

Learning Resources: Code + Videos + Exercises + Judge
This free coding book combines video lessons, text and code examples with explanations, practical
coding exercises with hints and guidelines, presentation slides and an automated judge system for
checking your solutions.

It is more than a book or tutorial. It is a carefully designed tool for learning programming by a lot of
practical coding, suitable for beginners with no experience.

Programming Is Learned by Writing, Not Reading!
If someone thinks they will read a book and learn to program without writing code and solving
problems, this is definitely a delusion. Programming needs a lot of practice, with code writing every
day and solving hundreds, even thousands of problems, persistently for years.

You need to solve a lot of problems, to make mistakes, to fix, to search for solutions and information
from the Internet, to try, to experiment, to find better solutions, to get used to the code, syntax, the
programming language, the development environment, to search for errors and debugging the broken
code, the algorithmic thinking, breaking the problems into smaller parts, gaining experience and raising
your skills every day, because when you learn to write code, this is only the first step to the profession
of the "software engineer". You have a lot to learn, really!

We advise the reader, as a minimum, to try out all the examples from the book, to play with them, to
change them and test them. Even more important than the examples are the exercises because they
develop the programmer's practical skills. This book provides nearly 150 practical coding exercises, so
it is a good foundation for developing coding and algorithmic thinking skills.

You need to solve all the problems in the book because programming is learned with practice! The
exercises after each topic are carefully selected to cover in depth the learning material. The purpose
of solving all the problems is to provide complete set of skills for writing programming code at a
beginner’s level (which is the purpose of this book). During the courses in SoftUni we purposefully
focus on practice and problem solving, and in most courses code writing occupies over 70% of the
entire course.

Solve all the exercises in the book. Otherwise you won't learn anything! Programming is
learned by writing a lot of code and solving thousands of problems!

https://softuni.org/
https://csharp-book.softuni.org/
https://github.com/SoftUni/Programming-Basics-Resources/tree/master/Presentation-Slides-CSharp-EN
https://judge.softuni.org/

Preface 15

The Software University (SoftUni)
The Software University (SoftUni) is the largest training center for software engineers in the South-
Eastern Europe. Tens of thousands of students pass through the university every year. SoftUni was
founded in 2014, as a continuation of the hard work of Dr. Svetlin Nakov in training skillful software
engineering professionals by modern high-quality practical education, that combines fundamental
knowledge with modern software technologies and a lot of practice.

Video: SoftUni and SoftUni Judge

Watch a video lesson about SoftUni and SoftUni Judge here: https://youtu.be/TDlDXnFCzoo.

SoftUni: High-Quality Practical Tech Education

The Software University (SoftUni) provides quality education, profession,
job and diploma for programmers, software engineers and IT professionals.
SoftUni builds an extremely successful and strong connection between
education and industry by collaboration with hundreds of software compa-
nies, provides job and internship of its students, creates quality
professionals for the software industry and directly responds to the needs
of employers via the training process.

Free Programming Courses at SoftUni

SoftUni organizes free programming lessons for beginners: online and physically in few locations. The
purpose is to give a chance to everyone who is interested in programming and technologies to try
programming and check if they are interested and if they would get seriously involved in software
development. You can sign up for the free course in programming basics using the SoftUni application
page: https://softuni.org.

The free courses at SoftUni have the purpose to introduce you to basic programming constructions
in the software development world, that you can use at any programming language. These include
working with data, variables and expressions, using conditional statements, constructing loops,
defining and calling methods and other approaches for building programming logic. The trainings are
highly practically oriented which means that the emphasis is strongly on exercises, and you get the
opportunity to apply your knowledge during the learning process.

This programming book accompanies the free programming lessons for beginners in SoftUni and
serves as an additional teaching aid to help the learning process.

The SoftUni Interactive Classroom

SoftUni teaches programming and trains software engineering professionals worldwide through its
innovative SoftUni Interactive Classroom (https://softuni.org), which combines video lessons with live
coding sessions, live code examples and interactive live coding exercises with live remote real-time
developer support (live chat with the trainers), integrated into a single platform on the Web.

Using the SoftUni Interactive Classroom, you learn directly in the Web browser, where you write,
execute and test code and your exercise solutions are automatically evaluated using an integrated
judge system. When you have difficulties with some exercise, you ask for help over multiple channels:
automated hints and guidelines and live help from the trainers (live chat with an expert from the
SoftUni training team). Give it a try at: https://softuni.org. This is how the SoftUni Interactive Learning
Platform (Interactive Classroom) looks like:

https://softuni.org/
https://nakov.com/
https://youtu.be/TDlDXnFCzoo
https://softuni.org/
https://softuni.org/
https://softuni.org/
https://softuni.org/

16 Programming Basics with C#

The Automated Judge System
The SoftUni Judge System (https://judge.softuni.org) is an automated Internet system for checking
the solutions of programming exercises via series of tests. The submission and verification happen in
real time: you submit the solution and within seconds you get an answer whether it is correct.

• Each successfully taken test gives you the points it gains.

• For a completely correct solution you get all the points for this problem.

• For partially correct solution you get part of the points for the problem.

https://judge.softuni.org/

Preface 17

• For a completely wrong solution you get 0 points.

This how the SoftUni Judge looks like:

All problems from the current book are available for testing in SoftUni Judge and we strongly
recommend testing them after you solve them to be sure you don't miss anything and that your
solution works correctly according to the task requirements.

Keep in mind some specifics about SoftUni Judge:

• For each task the judge system keeps the best score you had. Therefore, if you upload a solution
with wrong code or lower score compared to the previous one, the system won't take away
your points.

• The output of your program is compared by the system to a strictly expected result. Every
unnecessary symbol, missing comma or space may lead to 0 points on a particular test. The
output that the judge expects is described in the requirements of every task and nothing else
should be added.

• Example: If the output requires to print a number (ex. 25), do not display any descriptive
messages such as The result is: 25, just print as it is required, i.e. only the number.

The SoftUni judge system is available any time via its website: https://judge.softuni.org.

• To sign in use your authentication for the SoftUni website: https://softuni.org.
• Using the SoftUni system is free and it's not bound with the participation in SoftUni's courses.

We are convinced that after sending a few tasks you will like getting instant feedback for your
solutions and the Judge system will become your favorite assistant in your programming practice.

How to Become a Software Developer?
Dear readers, probably many of you have the ambition to become programmers and develop software
for a living, or work in the IT area. That's why we have prepared for you a short guide on "How to
become a programmer", so we can help you take the first steps towards this desired profession.

https://judge.softuni.org/
https://softuni.org/

18 Programming Basics with C#

You can become a programmer (working in a software company) after at least 1-2 years of intensive
training and coding every day, solving thousands of programming tasks, development of several more
serious practical projects and gaining a lot of experience with code writing and software development.
You can't become a programmer for a month or two! The profession of software engineer requires a
lot of knowledge, covered with a lot of practice.

Video: Become a Software Engineer – 4 Essential Skills

Watch a video lesson about the 4 essential skills, that all software engineers should have in order to
be experts their profession: https://youtu.be/qO1ckspCqxs.

The 4 Essential Skills of the Software Developers

There are 4 main skill groups where all programmers must have. Most of these skills are resistant in
time and are not influenced by the development in specific technologies (that are changing constan-
tly). These are the skills that any good programmer has and to which every beginner must strive:

• coding (20%)

• algorithmic thinking (30%)

• computer science and software engineering concepts (25%)

• languages and software technologies (25%)

Skill #1 – Coding (20%)

Writing code forms around 20% of the minimum knowledge and skills of a programmer, needed for
starting a job in a software company. The skill of coding includes the following components:

• Working with variables, conditional statements, loops

• Using functions, methods, classes and objects

• Data manipulation: arrays, lists, hash tables, strings

The skill of coding can be acquired in a few months of hard learning and solving practical problems by
writing code every day. This book covers only the first point of coding: working with variables,
conditional statements and loops. The rest remains to be learned in follow-up trainings, courses, books
and practical work on projects.

The book (and the courses based on it) gives only the beginning of one long and serious training on
the way to professional programming. If you don't learn perfectly the material from this book, you
can't become a programmer. You are going to miss fundamentals and it will be harder in the future.
For this reason, put enough time to programming basics: solve many problems and write code every
day for months until you learn to solve every problem from the book very easily. Then go ahead.

We specifically note that the programming language does not matter for the ability to code. You can
code or not. If you can code with C#, you will easily learn to code with Java, C++ or other languages.
That's why the coding skills are being studied quite seriously at the beginners courses in SoftUni
(curriculum), and each programming book for beginners starts with them, including this one.

Skill #2 – Algorithmic Thinking (30%)

The algorithmic (logical, engineering, mathematical, abstract) thinking forms around 30% of the
minimum skills of a programmer needed to start the profession. Algorithmic thinking is the ability to
break a particular problem into a logical sequence (algorithm), to find a solution for every separate
step and then assemble the steps into a working solution. That is the most important skill of any
programmer. How to develop algorithmic thinking?

https://youtu.be/qO1ckspCqxs
https://softuni.org/curriculum

Preface 19

• Algorithmic thinking is developed by solving multiple programming (1000+) problems, as diverse
as possible. That is the recipe: solving thousands of practical problems, building algorithms and
implementing the algorithms, along with debugging the issues that come up in the process.

• Sciences like physics, mathematics and identical ones helps a lot, but they are not mandatory!
People with engineering and technical skills usually learn very easily to think logically, because
they already have problem solving skills, even if it is not algorithmic.

• The ability of solving programming problems (for which algorithmic thinking is needed) is
extremely important for a programmer. Many companies test particularly this skill during their
job interviews.

The current book develops the beginner level of algorithmic thinking, but it's not enough to make you
a good programmer. To become good at this profession you must add logical thinking and problem-
solving skills, beyond the range of this book. For example, working with data structures (arrays, lists,
matrices, hash-tables, binary trees) and basic algorithms (searching, sorting, searching in tree
structures, recursion, etc.).

Algorithmic thinking skills can be seriously developed at the beginner courses for software engineers
in SoftUni (see curriculum), as well as in specialized algorithm-oriented trainings like data structures
and algorithms.

As you can guess the programming language doesn't matter for the development of algorithmic
thinking. To think logically is a universal skill, and it's not related only to programming. Because of the
well-developed logical thinking it's believed that programmers are smart people, and that a stupid
person can't become a programmer.

Skill #3 – Computer Science and Software Engineering (25%)

Fundamental knowledge and skills for programming, software development, software engineering and
computer science comprise around 25% of the developer's minimum skills to start a job. Here are the
more important of these skills and knowledge:

• Basic mathematical concepts related to programming – coordinate systems, vectors and
matrices, discrete and non-discrete mathematical functions, state automata and state machines,
combinatorics and statistics concepts, algorithm complexity, mathematical modeling and others

• Programming skills – code writing, working with data, using conditional statements and loops,
working with arrays, lists and associative arrays, strings and text processing, working with
streams and files, using programming interfaces (APIs), working with IDE, debugger, developer
tools, etc.

• Data structures and algorithms – lists, trees, hash-tables, graphs, search, sorting, recursion,
binary search trees, etc.

• Object-oriented programming (OOP) – working with classes, objects, inheritance, polymor-
phism, abstraction, interfaces, data encapsulation, exceptions management, design pattern

• Functional programming (FP) – working with lambda functions, higher order functions, functions
that return a function as a result, closure, etc.

• Databases – relational and non-relational databases, database modeling (tables and links
between them), SQL query language, object-relational mapping (ORM), transactions and
transaction management

• Network programming – network protocols, network communication, TCP/IP, concepts, tools
and technologies from computer networks

• Client-server interaction, peer to peer communication, back-end technologies, front-end
technologies, MVC architectures

https://softuni.org/curriculum
https://softuni.bg/opencourses/data-structures
https://softuni.bg/opencourses/algorithms

20 Programming Basics with C#

• Technologies for server development (back-end) – Web server architecture, HTTP protocol,
MVC architecture, REST architecture, web development frameworks, templating engines

• Front-end technologies (client-side development) – HTML, CSS, JS, HTTP, DOM, AJAX,
communication with backend, calling REST API, front-end frameworks, basic design and UX
(user experience) concepts

• Mobile technologies – mobile apps, Android and iOS development, mobile user interface (UI),
calling server logic

• Embedded systems – microcontrollers, digital and analog input and output control, sensor
access, peripheral management

• Operating systems – working with operating systems (Linux, Windows, etc.), installation,
configuration and basic system administration, process management, memory, file system, users,
multitasking, virtualization and containers

• Parallel and asynchronous programming – thread management, asynchronous tasks, promises,
common resources, and access synchronization

• Software engineering – source control systems, development management, task planning and
management, software development methodologies, software requirements and prototypes,
software design, software architectures, software documentation

• Software testing – unit testing, test-driven development, QA engineering, error reporting and
error tracking, automation testing, build processes and continuous integration

We need to clarify once again that the programming language does not matter for the assimilation of
all these skills. They accumulate slowly, over many years of practice in the profession. Some
knowledge is fundamental and can be learned theoretically, but for their full understanding and in-
depth awareness, you need years of practice.

Fundamental knowledge and skills for programming, software development, software engineering,
and computer science are taught in deep details during the Software Engineering Program at SoftUni
(https://softuni.org/curriculum) as well as in the elective courses. Working with a variety of software
libraries, APIs, frameworks and software technologies and their interaction gradually builds this know-
ledge and skills, so do not expect that you will understand them from a single course, book or project.

To start working as a programmer, only basic knowledge in the areas listed above is enough and the
improvement happens at the workplace according to the technology and development tools used in
the company and the team.

Skill #4 – Programming Languages and Technologies (25%)

Programming languages and software development technologies form around 25% of a programmer's
skills. They have the largest learning content, but they change very fast over time. If we look at the
job offers in the software industry, they usually mention words like the ones below, but in the job
offers they secretly mention the three main skills: coding, algorithmic thinking and knowing the
fundamentals of computer science and software engineering.

For those clearly technological skills the programming language does matter.

• Note: only for these 25% of the profession the programming language does matter!

• For the rest 75% of the skills the programming language doesn't matter, and these skills are
resistant in time and transportable between different languages and technologies.

Here are some commonly used software development stacks which software companies are looking
for (as of September 2019):

https://softuni.org/curriculum
https://softuni.org/curriculum
https://softuni.org/trainings/opencourses

Preface 21

• C# + OOP + FP + classes from .NET + SQL Server databases + Entity Framework (EF) +
ASP.NET MVC + HTTP + HTML + CSS + JS + DOM + jQuery + cloud + containers

• JavaScript (JS) + OOP + FP + databases + MongoDB or MySQL + HTTP + web programming +
HTML + CSS + JS + DOM + jQuery + Node.js + Express + Angular or React + cloud + containers

• Python + OOP + FP + databases + MongoDB or MySQL + HTTP + web development + HTML
+ CSS + JS + DOM + jQuery + Django or Flask + cloud + containers

• Java + Java API classes + OOP + FP + databases + MySQL + HTTP + web programming + HTML
+ CSS + JS + DOM + jQuery + JSP / Servlets + Spring MVC or Java EE / JSF + cloud + containers

• PHP + OOP + databases + MySQL + HTTP + web development + HTML + CSS + JS + DOM +
jQuery + Laravel or Symfony or other MVC framework for PHP + cloud + containers

• C++ + OOP + STL + Boost + native development + databases + HTTP + other languages and
technologies

• Swift + OOP + MacOS + iOS + Cocoa + Cocoa Touch + XCode + HTTP + REST + other
languages and technologies

• Go + OOP + Linux + Protobuf + gRPC + cloud + containers + other languages and technologies

If the words above look scary and absolutely incomprehensible, then you are at the very beginning of
your career and you need many years of learning until you reach the profession of a "software
engineer". Do not worry, every programmer goes through one or several technology stacks and needs
to study a set of interconnected technologies, but the bottom line is the ability to write programming
logic (coding), and the skill of algorithmic thinking (to solve programming problems). It's not possible
without them!

The Programming Language Doesn't Matter!

As it already became clear, the difference between programming languages and more specifically
between the skills of developers in different languages and technologies forms around 10-20% of the
developer’s skills.

• All programmers have around 80-90% of the same skills that do not depend on the programming
language! These are the skills to program and to design and develop software, that are very
similar in different programming languages and development technologies.

• The more languages and technologies you know, the faster you will learn new ones, and the
less you will feel the difference between them.

Indeed, the programming language almost does not matter, you just have to learn to program, and
this starts with coding (this book) goes on in the more complex programming concepts (like data
structures, algorithms, OOP and FP) and includes the use of fundamental knowledge and skills for
software development, software engineering and computer science.

Only when you start working with a specific technology into a software project you will need a specific
programming language, knowledge about specific programming libraries (APIs), frameworks and
software technologies (front-end UI technologies, back-end technologies, ORM technologies, etc.).
Keep calm, you will learn them, all programmers are learning them, but first you need to learn the
foundation: to program and do it well.

This book uses the C# language, but it is not required and can be replaced with Java, JavaScript,
Python, PHP, C++, Ruby, Swift, Go, Kotlin, or any other language. To be a software developer, you
need to learn coding (20%), learn algorithmic thinking, and solve problems (30%), to have fundamental
knowledge of programming and computer science (25%) and to master a specific programming
language and the technologies around it (25%). Be patient, for a year or two all this can be mastered
on a good starting level, if you are serious.

22 Programming Basics with C#

More About the Book
The book "Programming Basics with C#" has a long story behind, involving more than 40 contributors,
developers and trainers, who share their knowledge and skills to teach the newbies generation of
developers how to program.

Video: Book Authors and Contributors

Watch a video lesson about the trainers and contributors who developed this book and video course:
https://youtu.be/z_6I_mU0tv0.

The Story of This Book

The head of the project for creating the free open-source programming book for beginners is Dr.
Svetlin Nakov (https://nakov.com). He is the main ideologist and author of the learning content of the
free training course "Programming Basics" in SoftUni, which was used as the basis of the book.

Everything started with the mass free basic programming courses that have been conducted in the
whole country since 2014, when the "SoftUni" initiative was launched. At the beginning these courses
had larger range and covered more theory, but in 2016 Dr. Svetlin Nakov completely revised, updated
and simplified the whole method of teaching, strongly emphasizing on practice. This is how the core
of the learning content of this book was created.

The free courses at SoftUni for a start in programming, are probably the most massive trainings ever
conducted in South-Eastern Europe. Until 2019 the course in programming basics was held over 200
times, in around 40 Bulgarian towns and cities in person and multiple times online with over 100 000
participants. It was completely natural to write a book for the tens of thousands of participants at the
SoftUni basic programming course.

Following the principle of free software and free knowledge, Svetlin Nakov led a team of volunteers
and started this open-source project. At first the idea was to create a free book with the basics of
programming with the C# programming language and then other similar books with other program-
ming languages (like Java, JavaScript and Python).

The book was initially written in Bulgarian language in 2017 and translated into English in 2019.

The project is part of the passion of the Software University Foundation (https://softuni.foundation)
to create and distribute an open learning content to teach software engineers and IT professionals.

Authors Team

This book is developed by a broad author's team of volunteers who dedicated their time to give away
the systematized knowledge and guide you at the start of programming. Below is a list of all authors
and editors (in alphabetical order):

Aleksander Krastev, Aleksander Lazarov, Angel Dimitriev, Vasko Viktorov, Ventsislav Petrov, Daniel
Tsvetkov, Dimitar Tatarski, Dimo Dimov, Diyan Tonchev, Elena Rogleva, Zhivko Nedyalkov, Julieta
Atanasova, Zahariya Pehlivanova, Ivelin Kirilov, Iskra Nikolova, Kalin Primov, Kristiyan Pamidov,
Luboslav Lubenov, Nikolay Bankin, Nikolay Dimov, Pavlin Petkov, Petar Ivanov, Preslav Mihaylov,
Rositsa Nenova, Ruslan Filipov, Svetlin Nakov, Stefka Vasileva, Teodor Kurtev, Tonyo Zhelev,
Hristiyan Hristov, Hristo Hristov, Tsvetan Iliev, Yulian Linev, Yanitsa Vuleva.

Book cover design: Marina Shideroff.

https://youtu.be/z_6I_mU0tv0
https://nakov.com/
https://nakov.com/
https://nakov.com/
https://softuni.org/
http://softuni.foundation/
https://softuni.foundation/

Preface 23

Dr. Svetlin Nakov – The Leading Author

The entire project for creating this book, videos and teaching
curriculum for beginners in programming is driven by Svetlin Nakov
who inspired the other contributors to join this project and share their
knowledge and skills.

Dr. Svetlin Nakov (https://nakov.com) is a passionate software
engineer, inspirational technical trainer and tech entrepreneur from
Bulgaria, experienced in broad range of programming languages,
software technologies and development platforms. He is co-founder
of several highly successful tech startups and community and non-
profit organizations. Svetlin is training, innovation and inspiration
leader at SoftUni – the largest tech education provider in South-Eastern Europe.

Svetlin Nakov has 20+ years of technical background as software engineer, software project manager,
consultant, trainer and entrepreneur with rich experience with .NET, Java EE, information systems,
databases, cryptography and software security, Web development, JavaScript, PHP, Python and
software engineering. He is the leading author of 15 books on computer programming, software
technologies, cryptography, C#, Java, JavaScript, Python and tens of technical and scientific
publications. He is a big fan of knowledge sharing and is proud Wikipedia contributor, free books
author and open-source supporter.

Svetlin has been a speaker at hundreds of conferences, seminars, meetups, courses and other trainings
in the United States, Singapore, Germany, Egypt, Bulgaria and other locations. He holds a PhD degree
in computer science (for his research on computational linguistics and machine learning), several
medals from the International Informatics Olympiads (IOI) and the Bulgarian President’s award “John
Atanasoff”. He has been a part-time lecturer / trainer in Sofia University (Bulgaria), New Bulgarian
University (Bulgaria), the Technical University of Sofia (Bulgaria), Ngee Ann Polytechnic (Singapore),
Kingsland University (USA) and few others.

Currently Svetlin Nakov together with his partners drive the global expansion of the largest training
center for software engineers in the South-Eastern Europe and the region – the Software University,
where he inspires and teaches hundreds of thousands of young people in computer science, software
development, information technologies and digital skills, and gives them a profession and a job.

Translators Team

• English translation lead and editor: Nelly Karaivanova.

• Translators: Bilyana Borislavova, Kalina Milanova, Karina Cholakova, Marieta Petrova, Mirela
Damyanova, Petko Dyankov.

Video Lessons Team

The video lessons for this book were recorded by:

• Svetlin Nakov

• Preslav Mihaylov

Official Book Web Site

The book Programming Basics with C# is available for free at the following web address:

https://csharp-book.softuni.org

This is the official book site and any new version will be uploaded there. The book is mirrored in the
other programming languages mentioned on the website.

https://nakov.com/
https://softuni.org/
https://softuni.org/
https://www.linkedin.com/in/nelly-karaivanova-a1a17a4b
https://csharp-book.softuni.org/
https://nakov.com

24 Programming Basics with C#

The Book in Other Languages: Java, JavaScript, Python, C++

This book on programming for beginners is available in several programming languages (or is in the
process of being adapted for them):

• Programming Basics with C# (English)

• Programming Basics with C# (Bulgarian)

• Programming Basics with Java (Bulgarian)

• Programming Basics with JavaScript (Bulgarian)

• Programming Basics with Python (Bulgarian)

• Programming Basics with C++ (Bulgarian)

If you prefer a different language, select it from the list above.

Udemy Course "Comprehensive Introduction to Programming in C#"

To reach more readers, the book authors recorded a 22-hours free video course in Udemy, which
achieved tens of thousands of enrollments from 140+ countries:

Udemy: Comprehensive Introduction to Programming with C#

This book is an official textbook for this Udemy course and serves as detailed tutorial, extending the
course content with additional topics and more detailed explanations.

License and Distribution

The book is distributed freely in electronic format under an open license CC-BY-SA.

The book is published and distributed on paper by SoftUni and you can buy a hard copy from online
bookstores like Amazon.

The source code of the book can be found in GitHub: https://github.com/SoftUni/Programming-
Basics-Book-CSharp-EN.

International Standard Book Number (ISBN): 978-619-00-0902-3.

Official Facebook Page of the Book

The book has an official Facebook page where you can track the news about the book series
"Programming Basics", new releases, events and initiatives:

fb.com/IntroProgrammingBooks

Discussion Forum for Your Questions

Ask your questions about basic programming book at the SoftUni's FB Page or in the official SoftUni
discussion forum:

https://fb.com/softuni.org

http://forum.softuni.org

In these discussion channels you will get proper response to any question associated with the content
of this book also any other questions about programming. The SoftUni community is so big that you
will get a response within a few minutes. The trainers, assistants and mentors at SoftUni also responds
on your questions. Note that the forum can hold questions in different languages (English, Bulgarian
and others), but if you ask in English, you will get an answer in English.

https://csharp-book.softuni.bg/
https://csharp-book.softuni.bg/
https://java-book.softuni.bg/
https://js-book.softuni.bg/
https://python-book.softuni.bg/
https://cpp-book.softuni.bg/
https://www.udemy.com/comprehensive-introduction-to-programming-with-csharp
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN
https://facebook.com/IntroProgrammingBooks
https://fb.com/softuni.org
http://forum.softuni.org/

Preface 25

Because of the big number of learners, you can find in the forum practically any solution of any
exercise, shared by your colleague. Thousands of students already got the answer on the same
exercise, so if you are late you can check the forum. Even though the exercises in "Programming
Basics" are changing at some point, the sharing at SoftUni is always welcome and encouraged, that's
why you will easily find solutions and guidance in any exercise.

If you do have a specific question, for example if you spend many hours on certain piece of code and
it doesn't work correctly, you can always ask in the forum. You will be surprised how friendly are the
SoftUni's forum participants.

Reporting Bugs

If you find defects, inaccuracies or bugs in the book, you can report them in the official bug tracker
of the project:

https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/issues

We do not promise to fix everything you send us, but we do want to always improve the quality of
the book, so the reported errors and reasonable suggestions will be reviewed.

https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/issues

https://softuni.org

Chapter 1. First Steps in Programming
In this chapter, we are going to find out what programming is in its core and how to write simple
programs and apps.

• We will get familiar with the idea of programming languages and development platforms, along
with concepts like compilation and code execution.

• We are going to look at the environments for software development (IDEs) and how to work
with them, in particular with Visual Studio.

• We will write and execute our first program with the programming language C# in Visual Studio.

• We will exercise with a couple of tasks: we will create console-based programs, a graphical
application (GUI) and a Web application.

• We will learn how to check the correctness of the solutions from this book in the Judge system
of SoftUni.

• We will get to know some of the typical mistakes, which are often made during code writing
and how to prevent doing them.

Video: Chapter Overview
Watch a video about what we shall learn in this chapter here: https://youtu.be/6RVKMlXtWg4.

Introduction to Coding by Examples
Coding means to write commands for the computer, e.g.

Console.WriteLine("Welcome to coding");

Run the above code example: https://repl.it/@nakov/welcome-to-coding-csharp.

When executed, the above command prints the following text:

Welcome to coding

Several commands can be written as a sequence, called "computer program":

var size = 5;
Console.WriteLine("Size = " + size);
Console.WriteLine("Area = " + size * size);

Run the above code example: https://repl.it/@nakov/square-area-csharp.

The result (output) from the above program is as follows:

Size = 5
Area = 25

The above program (sequence of commands) consists of 3 commands:

1. Defines a variable size and stores an integer value 5 in it.

2. Prints the value of the variable a, along with some text.

3. Calculates and prints the value of the expression a * a.

https://youtu.be/6RVKMlXtWg4
https://repl.it/@nakov/welcome-to-coding-csharp
https://repl.it/@nakov/square-area-csharp

28 Programming Basics with C#

Let's explain in greater detail what is programming, what is programing language, how to write
commands and simple programs in the C# language, using the Visual Studio integrated development
environment.

Computer Programs – Concepts
Let's start with the concepts of computer programming: computer programs, algorithms, programming
languages, code compilation and execution.

Video: Computer Programs, Compilers, Interpreters

Watch a video lesson about the concepts of programming, programs, compilers and interpreters here:
https://youtu.be/U16C61p6m1k.

What It Means "To Program"?

To program means to give commands to the computer, for example "to play a sound", "to print
something on the screen" or "to multiply two numbers". When the commands are one after another, they
are called a computer program. The text of computer programs is called a program code (or a source
code, or even shorter – code).

Example of command for the computer:

Console.WriteLine("Welcome to coding");

Run the above code example: https://repl.it/@nakov/welcome-to-coding-csharp.

When executed, the above command prints the following text:

Welcome to coding

Computer Programs

Computer programs represent a sequence of commands that are written in certain programming
language, like C#, Java, JavaScript, Python, C++, PHP, C, Ruby, Swift, Go or another. Example of
computer program in C#:

using System;

class SquareArea
{
 public static void Main()
 {
 var size = 5;
 Console.WriteLine("Size = " + size);
 Console.WriteLine("Area = " + size * size);
 }
}

Run the above code example: https://repl.it/@nakov/square-area-csharp.

The above program defines a class SquareArea, holding a method Main(), which holds a sequence
of 3 commands:

1. Declaring and assigning a variable: var size = 5;

https://youtu.be/U16C61p6m1k
https://repl.it/@nakov/welcome-to-coding-csharp
https://repl.it/@nakov/square-area-csharp

Chapter 1. First Steps in Programming 29

2. Calculating and printing an expression: Console.WriteLine("Size = " + size);

3. Calculating and printing an expression: Console.WriteLine("Area = " + size * size);

The result (output) from the above program is as follows:

Size = 5
Area = 25

We shall explain in detail how to write programs in C#, why we need to define a class and why we
need to define a method Main() a bit later. Now, assume that the C# language requires all the above
code in order to execute a sequence of command.

In order to write commands, we should know the syntax and the semantics of the language which we
are working with, in our case – C#. Therefore, we are going to get familiar with the syntax and the
semantics of the language C#, and with programming generally, in the current book, by learning step
by step code writing from the simpler to the more complex programming constructions.

Algorithms

Computer programs usually execute some algorithm. Algorithms are a sequence of steps, necessary
for the completion of a certain task and for gaining some expected result, something like a "recipe".

For example, if we fry eggs, we follow some recipe (an algorithm): we warm up the oil in a pan, break
the eggs inside it, wait for them to fry and move them away from the stove.

Similarly, in programming the computer programs execute algorithms: a sequence of commands,
necessary for the completion of a certain task. For example, to arrange a sequence of numbers in an
ascending order, an algorithm is needed, e.g. find the smallest number and print it, then find the
smallest number among the rest of the numbers and print it, and this is repeated until there are no
more numbers left.

For convenience when creating programs, for writing programming code, for execution of programs
and other operations related to programming, we need a development environment, for example
Visual Studio.

Languages, Compilers, Interpreters and Environments
Let's review some concepts from computer programming: programming languages, compilers,
interpreters and development environments (IDEs).

Programming Languages

A programming language is an artificial language (syntax for expression), meant for giving commands
that we want the computer to read, process and execute. Using programming languages, we write
sequences of commands (programs), which define what the computer should do. Examples of
programming languages are C#, Java, JavaScript, Python, C, C++, PHP, Swift, Go and many others.
These languages differ in their philosophy, syntax, purpose, programming constructions and execution
environment. The execution of computer programs can be done with a compiler or with an interpreter.

Compilers

The compiler translates the code from programming language to machine code, as for each of the
constructions (commands) in the code it chooses a proper, previously prepared fragment of machine
code and in the meantime, it checks the text of the program for errors. Together, the compiled
fragments comprise the program into a machine code, as the microprocessor of the computer expects

30 Programming Basics with C#

it. After the program has been compiled, it can be executed directly from the microprocessor in
cooperation with the operating system. With compiler-based programming languages the compilation
of the program is done obligatory before its execution, and syntax errors (wrong commands) are found
during compile time. Languages like C++, C#, Java, Swift and Go work with a compiler. This an example
how the compiler execution may look (the console-based dotnet compiler):

Interpreters

Some programming languages do not use a compiler and are being interpreted directly by a specialized
software called an "interpreter". The interpreter is "a program for executing programs", written in
some programming language. It executes the commands in the program one after another, as it
understands not only a single command and sequences of commands, but also other language
constructions (evaluations, iterations, functions, etc.). Languages like Python, PHP and JavaScript work
with an interpreter and are being executed without being compiled. Due to the absence of previous
compilation, in interpreted languages the errors are being found during the execution time, after the
program starts running, not previously. This is an example how an interpreter may look (the python

interpreter in the console):

Development Environments (IDE)

An environment for development (Integrated Development Environment – IDE) is a combination of
traditional tools for development of software applications. In the development environment we write
code, compile and execute the programs. Development environments integrate in them a text editor
for writing code, a programming language, a compiler or an interpreter and a runtime environment for
executing programs, a debugger for tracking the program and seeking out errors, tools for user
interface design and other tools and add-ons.

Chapter 1. First Steps in Programming 31

Environments for development are convenient, because they integrate everything necessary for the
development of the program, without the need to exit the environment. If we don't use an
environment for development, we will have to write the code in a text editor, to compile it with a
command on the console, to run it with another command on the console and to write more additional
commands when needed, which is very time consuming. That is why most of the programmers use
an IDE in their everyday work.

For programming with the C# language the most commonly used IDE is Visual Studio, which is
developed and distributed freely by Microsoft and can be downloaded from: https://www.
visualstudio.com/downloads. Alternatives of Visual Studio are:

• Rider – https://www.jetbrains.com/rider

• MonoDevelop / Xamarin Studio – https://www.monodevelop.com

• SharpDevelop – http://www.icsharpcode.net/OpenSource/SD

• Visual Studio Code - https://code.visualstudio.com

• Eclipse aCute – https://projects.eclipse.org/projects/tools.acute

In the current book, we are going to use the development environment Visual Studio. This an example
how a development IDE may look (the Visual Studio IDE for C#):

Runtime Environments, Low-Level and High-Level Languages
A program, in its essence, is a sequence of instructions that make the computer do a certain task.
They are being entered by the programmer and are being executed unconditionally by the machine.

Video: Runtime Environments and Programming Languages

Watch a video lesson to learn about runtime environments and programming languages (high level
and low level): https://youtu.be/ziG5v36lSVk.

https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads
https://www.jetbrains.com/rider
https://www.monodevelop.com/
http://www.icsharpcode.net/OpenSource/SD
https://code.visualstudio.com/
https://projects.eclipse.org/projects/tools.acute
https://youtu.be/ziG5v36lSVk

32 Programming Basics with C#

Runtime Environments

Runtime environments are needed by some languages to execute the compiled programs. For
example, the compiled C# programs are executed by the .NET Core runtime environment and the
compiled Java programs are executed by Java JRE runtime environment. Other languages do not need
compilation, but still require a runtime environment. For example, the Python programs are executed
by the Python interpreter and runtime environment and the JavaScript programs are executed by the
Node.js runtime environment or by a Web browser (which provides another JS runtime environment).

Programming Languages: Low-Level and High-Level

There are different kinds of programming languages. Via languages of the lowest level you can write
the instructions that manage the processor, for example, using the "assembler" language. With a bit
higher level languages, like C and C++, you can create an operating system, drivers for hardware
management (for example a video card driver), web browsers, compilers, engines for graphics and
games (game engines) and other system components and programs. With languages of even higher
level, like C#, Python and JavaScript you can create application programs, for example a program for
reading emails or a chat program.

Low level languages manage the hardware directly and require a lot of effort and a large count of
commands to do a single task. Languages of higher level require less code for a single task, but do not
have a direct access to hardware. Application software is developed using such languages, for example
web applications and mobile applications.

Most of the software that we use daily, like music players, video players, GPS trackers, etc., are written
with languages for application programming that are high-level, like C#, Java, Python, C++, JavaScript,
PHP and others.

C# is a compiled language, which means that we write commands that are being compiled before
they're being executed. Exactly these commands, through a help program (a compiler), are being
transformed into a file, which can be executed (executable). To write a language like C# we need a
text editor or a development environment and .NET Runtime Environment (like .NET Core).

.NET Runtime Environment

.NET Runtime Environment represents a virtual machine, something like a computer in the computer,
which can run a compiled C# code. With the risk of going too deep into details, we have to explain
that the language C# is compiled into an intermediary .NET code and is executed from the .NET
environment, which compiles this intermediary code additionally into machine instructions (machine
code) in order to be executed by the microprocessor. .NET environment contains libraries with classes,
CSC compiler, CLR (Common Language Runtime – CLR) and other components, which are required
for working with the language C# and run C# programs.

The .NET environment is available as a free software with open source code for every modern
operating system (like Windows, Linux and Mac OS X). It has two variations, .NET Framework (the
older one) and .NET Core (the newer one), but none of that is essential when it comes to getting into
programming. Let us focus on writing programs with the C# language.

Compilation and Execution of C# Programs

As we have already mentioned, a program is a sequence of commands, otherwise said, it describes a
sequence of calculations, evaluations, iterations and all kinds of similar operations, which aim to obtain
certain result.

A C# program is written in a text format, and the text of the program is called a source code. It gets
compiled into an executable file (for example Program.cs gets compiled to Program.exe) or it is
executed directly from the .NET environment.

Chapter 1. First Steps in Programming 33

The process of compilation of the code before its execution is used only in compiled languages like
C#, Java and C++. With scripts and interpreted languages, like JavaScript, Python and PHP, the source
code gets executed step by step by an interpreter.

Computer Programs – Examples
Let's start with a few simple examples of short C# programs.

Video: Computer Programs – Examples

Watch a video lesson about the explained below sample computer programs: https://youtu.be/
TIwcDNJFid4.

Example: A Program That Plays the Musical Note "A"

Our first program is going to be a single C# command that plays the musical note "A" (432 Hz) with a
duration of half a second (500 milliseconds):

Console.Beep(432, 500);

A bit later we will find out how we can execute this command and hear the sound of the note, but for
now let's just look at what the commands in programming represent. Let's get to know a couple more
examples.

Example: A Program That Plays Musical Notes

We can complicate the previous program by giving for execution repeating commands in a loop for
playing a sequence of notes with rising height:

for (i = 200; i <= 4000; i += 200)
{
 Console.Beep(i, 100);
}

In the example above we made the computer play one after another for a very short time (100
milliseconds) all the notes with height 200, 400, 600 etc. Hz until they reach 4000 Hz. The result of
the program is playing something like a melody.

How do iterations (cycles) work in programming? We will learn that in the chapter "Loops", but for
now just accept that we repeat some command many times.

Example: A Program That Converts USD to EUR

Let's look at another simple program that reads from the user some amount of money in U.S. Dollars
(USD), an integer, converts it into Euro (EUR) by dividing it by the Euro's rate and prints the obtained
result. This is a program of 3 consecutive commands:

https://youtu.be/TIwcDNJFid4
https://youtu.be/TIwcDNJFid4

34 Programming Basics with C#

var dollars = int.Parse(Console.ReadLine());
var euro = dollars * 0.883795087;
Console.WriteLine(euro);

Run the above code example: https://repl.it/@nakov/dollars-to-euro-converter-csharp.

We examined three examples of computer programs: a single command, series of commands in a loop
and 3 consecutive commands. Now let's get to the more interesting part: how we can write our own
programs in C# and how we can compile them and run them.

How to Write a Console Application?

As a next step, let's pass through the steps of creating and executing a computer program that reads
and writes its data from and on the text console (a window for entering and printing text). These
programs are called "console programs". But before that, we should install and prepare the
development environment, in which we are going to write and run the C# programs from this book
and the exercises in it.

Development Environments (IDE) and Visual Studio
As it has already been said, in order to program we need an Integrated Development Environment
(IDE). This is actually an editor for programs, in which we write the program code and we can compile
it and run it to see the errors, fix them and start the program again.

• For programming with C# we use Visual Studio IDE for Windows operating system and
MonoDevelop or Raider for Linux or Mac OS X.

• If we program with Java, the environments IntelliJ IDEA, Eclipse or NetBeans are suitable.

• If we write in Python, we can use the PyCharm environment.

Video: Installing and Running Visual Studio

Watch the following video lesson for guidelines about how to install and run the Visual Studio IDE:
https://youtu.be/6AhALTJEagA.

Installing Visual Studio

We begin with the installation of the integrated environ-
ment Microsoft Visual Studio (Community edition, version
2017). Installing later versions of Visual Studio (like Visual
Studio 2019 and Visual Studio 2021) should be very similar.

The Community version of Visual Studio (VS) is distributed
freely by Microsoft and can be downloaded from:
https://www.visualstudio.com/vs/community.

The installation is typical for Windows with [Next], [Next]
and [Finish], but it's important to include the components
for "desktop development" and "ASP.NET". It is not
necessary to change the rest of the settings for the
installation.

The next lines describe in detail the steps for the installation
of Visual Studio (version Community 2017). After we
download the installation file and start it, the following
screen appears:

https://repl.it/@nakov/dollars-to-euro-converter-csharp
https://youtu.be/6AhALTJEagA
https://www.visualstudio.com/vs/community

Chapter 1. First Steps in Programming 35

Press the [Continue] button and you will see the screen bellow:

A screen with the installation panel of Visual Studio is being loaded.

36 Programming Basics with C#

Put a check mark on [Universal Windows Platform development], [.NET desktop development] and
[ASP.NET and web development], then press the [Install] button. Basically, this is everything.

The installation of Visual Studio begins, and a screen like the one bellow will appear:

After Visual Studio is installed, an informative screen will appear. Press the [Launch] button to start it.

Chapter 1. First Steps in Programming 37

Upon starting VS a screen appears like the one bellow. On it you can choose whether you will enter
Visual Studio using a Microsoft account. For now, we choose to continue without being logged into
our Microsoft account, and therefore we choose the option [Not now, maybe later.]. At a later point,
if you have such an account, you may log in, and if you don't have one, and you have difficulties with
its creation, you can always ask in the SoftUni official discussion forum (http://forum.softuni.org) or
in the SoftUni official Facebook page (https://fb.com/softuni.org).

The next step is to choose the color theme, in which Visual Studio is visualized. The choice here lays
completely on the preferences of the user and it doesn't matter which option will be chosen.

http://forum.softuni.org/
https://fb.com/softuni.org

38 Programming Basics with C#

Press the [Start Visual Studio] button and the main view of Visual Studio Community will be displayed:

That's all. We are ready to work with Visual Studio.

Older Versions of Visual Studio

You can use older versions of Visual Studio (for example version 2015 or 2013 or even 2010 or 2005),
but it is not recommended, as they don't contain some of the newer options for development, and
not all the examples from the book will run the same way.

Online Development Environments

There are alternative environments for development online directly into your web browser. These
environments are not very convenient, but if you don't have other opportunity, you can start your
training with them and install Visual Studio later. Here are some useful links:

• For the language C# the site .NET Fiddle allows code writing and its execution online:
https://dotnetfiddle.net.

• For Java you can use the following online Java IDE: https://www.compilejava.net.

• For JavaScript you can write a JS code directly in the console of a given browser when you
press [F12].

• The site Repl.it provides online coding environment for multiple languages (C#, Java, JS, Python,
C++ and many more): https://repl.it.

Project Solutions and Projects in Visual Studio

Before we start working with Visual Studio, it is necessary to get familiar with the concepts of a Visual
Studio Solution and a Visual Studio Project, which are an inevitable part of it.

Visual Studio Project represents "the project" we are working on. In the beginning, these will be our
console applications, which we are going to learn writing with the help of the current book, the
resources in it and the course Programming Basics in SoftUni. With deeper learning, time and practice,
these projects will move into the direction of desktop applications, web applications and other
developments.

https://dotnetfiddle.net/
https://www.compilejava.net/
https://repl.it/

Chapter 1. First Steps in Programming 39

A project in VS logically groups multiple files constructing a given application or a component. A C#
project contains one or more C# source files, configuration files and other resources. In every C#
source file, there is one or more definition of types (classes or other definitions). In the classes there
are methods (actions), and they contain a sequence of commands. It sounds complicated, but with
bigger projects a structure like this is very convenient and allows good organization of the work files.

Visual Studio Solution represents a container (a work solution), in which a few projects are logically
bound. The purpose of the binding of these VS Projects is to create an opportunity for the code from
any of the projects to collaborate with the code from the rest of the VS projects, to ensure the
application or the website to work correctly. When the software product or service that we develop
is big, it is built as a VS Solution, and this Solution is split into projects (VS Projects) and inside each
project there are folders with source files. This hierarchical organization is much more convenient with
more serious projects (let's say over 50 000 lines of code).

For smaller projects VS Solutions and VS Projects are complicating the work, rather than helping, but
you will get used to it quickly.

Example: Creating a Console Application "Hello C#"
Let's create our first console program in Visual Studio. We will start the Visual Studio IDE, will create
a new console-based C# project, will write a few lines of C# code and will compile and run the
program. Finally, we will submit our C# code for evaluation in the automated Judge system.

Video: Console Application in Visual Studio

Watch a video lesson about creating a console app in Visual Studio: https://youtu.be/ecAXCjjk6Nw.

Console App in Visual Studio: Step by Step

We already have Visual Studio and we can start it. Then, we create a new console project: [File] →
[New] → [Project] → [Visual C#] → [Windows] → [Console Application].

https://youtu.be/ecAXCjjk6Nw

40 Programming Basics with C#

We set a meaningful name to our program, for example HelloCSharp:

Visual Studio is going to create for us an empty C# program, which we have to finish writing (VS
Solution with VS Project in it, with C# source file in it, with C# class in it, with Main() method in it).

Writing the Program Code

The source code of the C# program is written in the section Main(string[] args), between the
opening and the closing parentheses { }. This is the main method (action), that is being executed with

the start of a C# program. This Main() method can be written in two ways:

• static void Main(string[] args) – with parameters from the command line (we are not
going into details).

• static void Main() – without parameters from the command line.

Chapter 1. First Steps in Programming 41

Both ways are valid, as the second one is recommended, because it is shorter and clearer. By default,
though, when creating a console application, Visual Studio uses the first way, which we can edit
manually if we want to, and delete the part with the parameters string[] args.

Press [Enter] after the opening parentheses { and start writing. The code of the program is written
inwards, as this is a part of shaping up the text for convenience during a review and/or debugging.

Write the following command:

Console.WriteLine("Hello C#");

Here is how our program should look like in Visual Studio:

42 Programming Basics with C#

The command Console.WriteLine("Hello C#") in the C# language means to execute printing
(WriteLine(…)) on the console (Console) and to print the text message Hello C#, which we should

surround by quotation marks, in order to clarify that this is a text. In the end of each command in the
C# language the symbol ; is being put and it says that the command ends in that place (it doesn't
continue on the next line).

This command is very typical in programming: we say a given object should be found (in this case the
console) and some action should be executed upon it (in this case it is printing something that is given
inside the brackets). More technically explained, we call the method WriteLine(…) from the class

Console and give as a parameter to it a text literal "Hello C#".

Starting the Program

To start the program, press [Ctrl + F5]. If there aren't any errors, the program will be executed. The
result will be written on the console (in the black window):

Notice that we start it with [Ctrl+F5], and not only [F5] or with the start button in Visual Studio. If we
use [F5], the program will run shortly and right afterwards the black window will disappear, and we
are not going to see the result.

Actually, the output from the program is the following text message:

Hello C#

The message "Press any key to continue . . ." is displayed additionally on the last line on the console
after the program ends, in order to push us to see the result from the execution and to press a key to
close the console.

Testing the Program in the Judge System

Testing of the problems in this book is
automated and is done through the
Internet, using the SoftUni Judge System:
https://judge.softuni.org website.

The evaluation of the submitted solutions
is done immediately by the system. Each
task goes through a sequence of tests, as
every successfully passed test gives the
points assigned for it. The tests that are
applied to the tasks are hidden.

We can test the above program here:
https://judge.softuni.org/Contests/
Practice/Index/503#0. We place the
source code of the program in the black
field and we choose C# code, like it is
shown on the figure.

We send our solution for evaluation using
the [Send] button. The system gives a

https://judge.softuni.org/
https://judge.softuni.org/Contests/Practice/Index/503#0
https://judge.softuni.org/Contests/Practice/Index/503#0

Chapter 1. First Steps in Programming 43

result back in a few seconds in the table with sent solutions. When necessary, we can press the button
for renewing the results [refresh] in the upper right side of the table with sent solutions:

In the table with the sent solutions the judge system is going to show one of the following possible
results:

• Points count (between 0 and 100), when the submitted code is compiled successfully (there are
no syntax errors) and can be tested.

o When the solution is correct all of the tests are marked in green and we get 100 points.

o When the solution is incorrect some of the tests are marked in red and we get incomplete
or 0 points.

• When the program is incorrect, we will get an error message upon compiling.

How to Register in SoftUni Judge?

Use your credentials (username + password) for the site softuni.org / softuni.bg. If you don't have a
SoftUni registration, create one. It takes only a minute – a standard registration in an Internet site.

Testing the Programs That Play Notes

Now, after you know how to run programs, you can test your example programs that play musical
notes. Have some fun, try these programs out. Try to change them and play with them. Change the
command Console.WriteLine("Hello C#"); with the command Console.Beep(432, 500);
and start the program. Check if the sound of your computer is on and whether it's turned up. If you
work in an online environment, you will not hear a sound, because the program is not executed on
your computer, but elsewhere. This program cannot be checked in the SoftUni judge.

Typical Mistakes in C# Programs
Now we will review the typical mistakes in the C# programs of the beginners, like missing semicolon,
missing quotations mark, missing parenthesis, wrong letter capitalization, etc.

Video: Typical Mistakes in C# Programs

Watch a video lesson about the most typical mistakes in the C# programs of the beginners: https://
youtu.be/8XwM2AVC0wU.

Writing Outside if the Main Method

One of the common mistakes with beginners is writing outside the body of the Main() method,
because the integrated environment or the compiler can't read the given commands in the program

https://youtu.be/8XwM2AVC0wU
https://youtu.be/8XwM2AVC0wU

44 Programming Basics with C#

correctly. Here is an example for an incorrectly written program, where the command are placed
outside of the Main() method:

static void Main(string[] args)
{
}
Console.WriteLine("Hello C#");

Wrong Letter Capitalization

Another mistake is switching capital and small letters, and these matter for calling the commands and
their correct functioning. Here is an example of such a mistake:

static void Main(string[] args)
{
 Console.Writeline("Hello C#");
}

In the example above Writeline is written wrong and has to be fixed to WriteLine.

Missing Semicolon

The absence of a semicolon (;) in the end of the commands is one of the eternal problems of the
beginner programmer. Skipping this sign leads to incorrect functioning of the program and often the
problem stays unnoticed. Here is an example of a mistaken code:

static void Main(string[] args)
{
 Console.Writeline("Hello C#")
}

Missing or Wrong Quotation Mark or Parenthesis

Missing quotation mark or the absence of opening or closing parentheses can also turn out to be a
problem. Same as the semicolon, here also the problem leads to incorrect functioning of the program
or overall to its failure. This mistake is hardly noticeable in a larger code. Here is an example of a
program with errors:

static void Main(string[] args)
{
 Console.WriteLine("Hello C#);
}

This program will throw a compile time error and the build is going to fail, and even before that the
code will become underlined, in order to point the programmer to the mistake that they'd made (the
missing closing quotation mark):

Chapter 1. First Steps in Programming 45

Another example is missing { or }. It may produce unexpected error messages, not always easy to
understand.

class Example
{
 static void Main(string[] args)
 {
 Console.WriteLine("Hello C#");
}

Exercises: First Steps in Coding
Welcome to the exercises. Now we are going to write a couple of console applications, by which we
are going to make a few more steps into programming. After that we will show how we can program
something more complex – programs with graphical user interface.

Video: Chapter Summary

Watch the following short video to summarize what we learned about coding in this chapter:
https://youtu.be/GstN43-eN2g.

What We Learned in This Chapter?

First, we have learned what is programming – giving commands, written in a computer language,
which the machine understands and is able to execute. We understood what a computer program is
– it represents a sequence of commands, arranged one after another. We got familiar with the
language for programming C# on a base level and how to create simple console applications with
Visual Studio. We followed the structure of the programming code in the C# language, as for example,
the fact that commands are mainly given in the section static void Main(string[] args)
between the opening and closing curly parentheses. We saw how to print with
Console.WriteLine(…) and how to start our program with [Ctrl + F5]. We learned how to test our
code in SoftUni Judge.

https://youtu.be/GstN43-eN2g

46 Programming Basics with C#

The Exercises

Let's get started with the exercises. You didn't forget that programming is learned by writing a lot of
code and solving problems, did you? Let's solve a few problems to confirm what we have learned.

Problem: Expression

Write a console-based C# console program that calculates and prints the value of the following
numerical expression:

(3522 + 52353) * 23 - (2336 * 501 + 23432 - 6743) * 3

Note: it is not allowed to previously calculate the value (for example with Windows Calculator).

Video: Problem "Expression"

Watch a video lesson to learn how to solve the "Expression" problem step by step, with concise
explanations: https://youtu.be/JEbwS2xtbLw.

Hints and Guidelines

Create a new C# console project with title "Expression". Find the method static void Main(
string[] args) and go into its body between { and }. After that, write the code that calculates the
above numerical expression and prints its value on the console. Put the above numerical expression
inside the brackets of the command Console.WriteLine(…):

Start the program with [Ctrl+F5] and check if the result is the same as the one in the picture:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/503#1.

https://youtu.be/JEbwS2xtbLw
https://judge.softuni.org/Contests/Practice/Index/503#1

Chapter 1. First Steps in Programming 47

Problem: Numbers from 1 to 20

Write a C# console program that prints the numbers from 1 to 20 on separate lines on the console.

Video: Problem "Numbers from 1 to 20"

Watch a video lesson to learn how to solve the "Numbers from 1 to 20" problem step by step:
https://youtu.be/8Qne7CBM2SQ.

Hints and Guidelines

Create a C# console application with name “Nums1To20”:

https://youtu.be/8Qne7CBM2SQ

48 Programming Basics with C#

Inside the static void Main() method write 20 commands Console.WriteLine(), each on a
separate line, in order to print the numbers from 1 to 20 one after another. Some of you may be
wondering if there is a smarter way. Relax, there is, but we will mention it later on.

Now we start the program and we check if the result is what it is supposed to be:

1
2
…
20

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/503#2.

Now think whether we can write the program a smarter way, so we don't repeat the same command
20 times. Seek out information on the Internet about "for loop C#".

Problem: Triangle of 55 Stars

Write a C# console program that prints a triangle made of 55 stars on 10 lines:

*
**

https://judge.softuni.org/Contests/Practice/Index/503#2
https://www.google.com/search?q=for+loop+C%23&oq=for+loop+C%23

Chapter 1. First Steps in Programming 49

Video: Problem "Triangle of 55 Stars"

Watch a video lesson to learn how to solve the "Triangle of 55 Stars" problem step by step:
https://youtu.be/BflTRoOQYLA.

Hints and Guidelines

Create a new console C# application with name “TriangleOf55Stars”. Inside it, write code that
prints the triangle of stars, for example through 10 commands, as the ones pointed out below:

Console.WriteLine("*");
Console.WriteLine("**");
…

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/503#3.

Try to improve your solution, so that it doesn't have many repeating commands. Could it be done
with a for loop? Did you find a smart solution (for example with a loop) of the previous task? With
this task you can also use something similar, but a bit more complex (two loops, one inside the other).
If you don't succeed, there is no problem, we will be learning loops in a few chapters and you will be
reminded of this task then.

Problem: Calculate Rectangle Area

Write a C# program that reads from the console two numbers, a and b, calculates and prints the area
of a rectangle with sides a and b.

Sample Input and Output

a b area a b area a b area

2 7 14 12 5 60 7 8 56

Video: Problem "Rectangle Area"

Watch a video lesson to learn how to solve the "Rectangle Area" problem in C# step by step:
https://youtu.be/6fwNJ5k9zTE.

Hints and Guidelines

Create a new console C# program. To read both of numbers, use the following commands:

What remains is to finish the program above, to calculate the area of the rectangle and to print it. Use
the command that is already known to us Console.WriteLine() and put inside its brackets the
multiplication of the numbers a and b. In programming, multiplication is done using the operator *.

https://youtu.be/BflTRoOQYLA
https://judge.softuni.org/Contests/Practice/Index/503#3
https://youtu.be/6fwNJ5k9zTE

50 Programming Basics with C#

Test Your Solution

Test your solution with a few examples. You have to get an output, similar to this one (we enter 2 and
7 as input and the program prints result 14 – their multiplication):

2
7
14

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/503#4.

* Problem: A Square Made of Stars

Write a C# console program that reads from the console an integer N and prints on the console a
square made out of N stars, like in the examples below.

Sample Input and Output

Input Output Input Output Input Output

3

* *

4

* *
* *

5

* *
* *
* *

Video: Problem "Square of Stars"

Watch a video lesson to learn how to solve the "Square of Stars" problem step by step:
https://youtu.be/zaj-DRbaHaI.

Hints and Guidelines

Create a new console C# program. To read the number N (2 ≤ N ≤100), use the following code:

Finish the program above, so that it prints a square, made out of stars. It might be necessary to use
for loops. Look for information on the Internet.

Attention: this task is harder than the rest and is given now on purpose, and it's marked with a star, in
order to provoke you to look for information on the Internet. This is one of the most important skills
that you have to develop while you're learning programming: looking for information on the Internet.
This is what you're going to do every day, if you work as a developer, so don't be scared, try it out.

If you have any difficulties, you can also ask for help in the SoftUni official discussion forum
(http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

Testing in the Judge System

https://judge.softuni.org/Contests/Practice/Index/503#4
https://youtu.be/zaj-DRbaHaI
http://forum.softuni.org/
https://fb.com/softuni.org

Chapter 1. First Steps in Programming 51

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/503#5.

Lab: Graphical and Web Applications
Now we are about to build one simple web application and one simple graphical application, in order
to take a look at what we will be able to create when we progress with programming and software
development. We are not going to look through the details about the used techniques and
constructions fundamentally. Rather than that, we are just going to take a look at the arrangement
and functionality of our creation. After we progress with our knowledge, we will be able to do bigger
and more complex software applications and systems. We hope that the examples given below will
straighten your interest, rather than make you give up.

Console, Graphical and Web Applications

With console applications, as you can figure out yourselves, all operations for reading input and
printing output are done through the console. The input data is entered in the console, which is then
read by the application, also in it, and the output data is printed on the console after or during the
runtime of the program.

While a console application uses the text console, web applications use web-based user interface. To
execute them, two things are needed – a web server and a web browser, as the browser plays the
main role in the visualization of the data and the interaction with the user. Web applications are much
more pleasant for the user, they visually look better, and a mouse and touch screen can be used (for
tablets and smartphones), but programming stands behind all of that. And this is why we have to learn
to program and we have already made our first very little steps towards that.

Graphical (GUI) applications have a visual user interface, directly into your computer or mobile device,
without a web browser. Graphical applications (also known as desktop applications) contain one or
more graphical windows, in which certain controllers are located (text fields, buttons, pictures, tables
and others), serving for dialog with the user in a more intuitive way. Similar to them are the mobile
applications in your telephone or your tablet: we use forms, text fields, buttons and other controls
and we control them by programming code. This is why we are learning how to write code now: the
code is everywhere in software development.

Exercises: GUI and Web Applications

In the next exercises we will create a GUI and a Web application:

• Graphical Application "Summator" (Calculator)
• Web Application "Summator" (Calculator)

Lab: Graphical Application "Summator" (Calculator)

Write a graphical (GUI) application, which
calculates the sum of two numbers (see the
screenshot).

By entering two numbers in the first two fields
and pressing the button [Calculate] their sum is
being calculated and the result is shown in the
third text field. For our application we will use
the Windows Forms technology, which allows
the creation of graphical applications for
Windows, in the development environment Visual Studio and with programming language C#.

https://judge.softuni.org/Contests/Practice/Index/503#5

52 Programming Basics with C#

Creating a New C# Project

In Visual Studio we create a new C# project of type “Windows Forms Application”:

When creating a Windows Forms application an editor for user interface will be shown, in which
different visual elements could be put (for example text boxes and buttons):

Adding Text Fields and a Button

We drag and drop from the toolbar on the left (Toolbox) three text boxes (TextBox), two labels
(Label) and a button (Button), afterwards we arrange them in the window of the application. Then
we change the names of each of the controls:

Chapter 1. First Steps in Programming 53

• Names of the text boxes: textBox1, textBox2, textBoxSum

• Name of the button: buttonCalculate

• Name of the form: FormCalculate

Renaming is done from the window “Properties” on the right, by changing the field (Name):

We change the headings of the controls (their Text property):

• buttonCalculate -> Calculate

• label1 -> +

• label2 -> =

• Form1 -> Summator

54 Programming Basics with C#

Resizing the Controls and Starting the Application

We resize and arrange the controls, to make them look better:

We try to run the application [Ctrl+F5]. It should start, but it should not function completely, because
we haven't written what happens when we click the button yet.

Writing the Program Code

Now it is time to write the code, which sums the numbers from the first two fields and shows the
result in the third field. For this purpose, we double click the [Calculate] button. The place, in which
we write what is going to happen by clicking the button will be shown:

Chapter 1. First Steps in Programming 55

We write the following C# code between the opening and the closing brackets { }:

This code takes the first number from the field textBox1 and keeps it in the variable num1, keeps the
second number from the field textBox2 in the variable num2, afterwards it sums num1 and num2 in
the variable sum and in the end takes the text value of the variable sum in the field textBoxSum.

Testing the Application

We start the program again with [Ctrl+F5] and we check whether it works correctly. We try to
calculate 4 + 5, and afterwards -12.5 + 1.3:

We try with invalid numbers, for example: “aaa” and “bbb”. It seems there is a problem:

Fixing the Bug and Retesting the Application

The problem comes from the conversion of the text field into a number. If the value inside the field is
not a number, the program throws an exception. We can rewrite the code in order to fix this problem:

56 Programming Basics with C#

The code above catches the errors when working with numbers (it catches exceptions) and in case of
an error it gives a value “error” in the field holding the result. We start the program again with
[Ctrl+F5] and try if it works. This time by entering a wrong number the result is “error” and the
program continues its normal work:

Is it complicated? It is normal to seem complex, of course. We are just beginning to get into
programming. The example above requires much more knowledge and skills, which we are going to
develop through this book and even afterwards. Just allow yourself to have some fun with desktop
programming. If something doesn't work, you can ask for help in the SoftUni official discussion forum
(http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org). Or
move on bravely forward to the next example or to the next chapter of the book. A time will come
when it is going to be easy for you, but you really have to put an effort and be persistent. Learning
programming is a slow process with lots and lots of practice.

Lab: Web Application "Summator" (Calculator)

Now we are going to create
something even more complex,
but also more interesting: Web
application that calculates the
sum of two numbers. By
entering two numbers in the
first two text fields and pressing
the [Calculate] button, their sum
is calculated, and the result is
shown in the third text field. The
Web application is expected to
look similarly to the screenshot.

http://forum.softuni.org/
https://fb.com/softuni.org

Chapter 1. First Steps in Programming 57

Pay attention that we are creating a Web-based application. This is an application that is available
through a web browser, just like your favorite email or news website. The web application is going to
have a server side (back-end), which is written in the C# language with the ASP.NET MVC technology,
and a client side (front-end), which is written in the HTML language (this is a language for visualization
of information in a web browser).

As a difference compared to console applications, which read and write the data in the form of a text
on the console, Web applications have a Web-based user interface. Web applications are being loaded
from some Internet address (URL) through a standard web browser. Users write input data in a page,
visualized from the web browser, the data is processed on a web server and the results are shown
again in a page of the web browser. For our web application we are going to use the ASP.NET MVC
technology, which allows creating of web applications with the programming language C# in the
development environment Visual Studio.

Creating a New ASP.NET MVC Project

In Visual Studio we create a new C# project of type “ASP.NET Web Application”, named WebApp:

We choose as type of the application: “MVC”:

58 Programming Basics with C#

Creating a View (Web Form)

We find the file Views\Home\Index.cshtml. The view of the home page of our web app is inside it:

We delete the old code from the file Index.cshtml and write the following code:

This code creates a web form with three text boxes and a button in it. Inside the fields, values are
being loaded, which are calculated previously in the object ViewBag. The requirement says that with
the click of the [Calculate] button the action /home/calculate (action calculate from the home
controller) will be called.

This is how the file Index.cshtml is supposed to look after the change:

Chapter 1. First Steps in Programming 59

Writing the Program Code

What remains is to write the action that sums the numbers when clicking the button [Calculate]. We
open the file Controllers\HomeController.cs and we add the following code into the body of
HomeController class:

This code implements the “calculate” action. It takes two parameters num1 and num2 and stores them
in the ViewBag object, after which it calculates and stores their sum as well. The values stored in
ViewBag are later used from the view. These values are shown in the three text fields inside the form
for summing numbers in the web page of the application.

Here is how the file HomeController.cs should look after the change:

60 Programming Basics with C#

Testing the Web Application

The application is ready. We can start it with [Ctrl+F5] and test whether it works:

Does it look scary? Don't be afraid! We have a lot more to learn, to reach the level of knowledge and
skills to write web-based applications freely like in the example above, as well as much bigger and
much more complex ones. If you don't succeed, there is nothing to worry about, keep moving on.
After some time, you will remember with a smile how incomprehensible and exiting your first collision
with web programming was. If you have problems with the example above, you can ask for help in
the SoftUni official discussion forum (http://forum.softuni.org) or in the SoftUni official Facebook
page (https://fb.com/softuni.org).

The purpose of both of the above examples (graphical desktop application and web application) is not
to teach you, but to make you dive a little deeper into programming, to enhance your interest towards
software development and to inspire you to learn hard.

You have a lot to learn yet, but it's interesting, isn't it?

http://forum.softuni.org/
https://fb.com/softuni.org

Chapter 2.1. Simple Calculations
In this chapter we are going to get familiar with the following concepts and programming techniques:

• What is the system console?

• How to read numbers from the system console?

• How to work with data types and variables, which are necessary to process numbers and the
operations between them?

• How to print output (a number) on the console?

• How to do simple arithmetic operations: add, subtract, multiply, divide, string concatenation?

Video: Chapter Overview
Watch a video about what shall we learn in this chapter here: https://youtu.be/NXbFJw_NstA.

Introduction to Simple Calculations by Examples
Computer programs can enter data from the console, perform calculations and print the results on
the console. This is a simple example of C# program that converts from foots to meters:

Console.Write("Foots = ");
var foots = double.Parse(Console.ReadLine());
var meters = foots * 0.3048;
Console.Write("Meters = ");
Console.WriteLine(meters);

Run the above code example: https://repl.it/@nakov/foots-to-meters-csharp.

The above program enters a number and converts its value from foots to meters. This is a sample
output from the above code, when the user enters 5 as input:

Foots = 5
Meters = 1.524

In C# we can read a text line from the console using Console.ReadLine() and we can convert the
text to a floating-point number using double.Parse(text). We can print text and numbers using
the $ text formatting syntax as follows:

var radius = 1.25;
Console.WriteLine($"Circle radius = {radius}");
Console.WriteLine($"Circle area = {Math.PI * radius * radius}");

Run the above code example: https://repl.it/@nakov/circle-area-csharp.

The $ syntax replaces all expressions in curly brackets with their values. The output from the above
code is:

Circle radius = 1.25
Circle area = 4.90873852123405

Let's explain in greater detail how to use the console, how to enter numbers and text and how to
perform simple calculations and format and print text and expressions on the console in C#.

https://youtu.be/NXbFJw_NstA
https://repl.it/@nakov/foots-to-meters-csharp
https://repl.it/@nakov/circle-area-csharp

62 Programming Basics with C#

The System Console
Simply called "console", the "system console", the "system terminal", the "standard input / output",
also the "computer command line console", represents the tool by which we give the computer
commands in a text format and get the results from their execution again as a text.

Video: The System Console

Watch a video lesson about the system console here: https://youtu.be/ehHnNu6M55M.

The System Console Explained

Generally, the system console represents a text terminal, which means that it accepts and visualizes
just text without any graphical elements like buttons, menus, etc. It usually looks like a black colored
window like this one:

In most operating systems, the console is available as a standalone application on which we write
console commands. It is called a Command Prompt in Windows, and a Terminal in Linux and Mac. The
console runs console applications. They read text from the command line and print text on the
console. In this book we are going to learn programming mostly through creating console applications.

In the next examples we will read data (like integers, floating-point numbers and strings) from the
console and will print data on the console (text and numbers).

Reading Integers from the Console
In order to read an integer (not a float) number from the console, we have to declare a variable, declare
the number type and use the standard command for reading a text line from the system console
Console.ReadLine() and after that convert the text line into an integer number using
int.Parse(text):

var num = int.Parse(Console.ReadLine());

The above line of C# code reads an integer from the first line on the console.

https://youtu.be/ehHnNu6M55M

Chapter 2.1. Simple Calculations 63

Video: Reading Data from the Console

Watch a video lesson about reading from the system console: https://youtu.be/WPlQ5HYBGJQ.

Video: Reading Integers from the Console

Watch a video lesson about reading integers from the console: https://youtu.be/3TC2F-ffw34.

Example: Calculating a Square Area
For example, let us look at the following program, which reads an integer from the console, multiplies
it by itself (squares it) and prints the result from the multiplication.

Video: Calculating a Square Area

Watch a video lesson about calculating square area: https://youtu.be/gdYTotTFVgA.

Code: Calculating a Square Area

This code demonstrates how we can calculate the square area by the given length of the side:

Console.Write("a = ");
var a = int.Parse(Console.ReadLine());
var area = a * a;
Console.Write("Square area = ");
Console.WriteLine(area);

Here is how the program would work when we have a square with a side length equal to 3:

Try to write a wrong number, for example "hello". You will get an error message during runtime
(exception). This is normal. Later on, we will find out how we can catch these kinds of errors and make
the user enter a number again.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#0.

How Does the Example Work?

The first line Console.Write("a = "); prints an informative message, which invites the user to
enter the side of the square a. After the output is printed, the cursor stays on the same line. Staying
on the same line is more convenient for the user, visually. We use Console.Write(…), and not
Console.WriteLine(…) and this way the cursor stays on the same line.

The next line var a = int.Parse(Console.ReadLine()); reads an integer from the console.
Actually, it first reads a text (string) using Console.ReadLine() and after that it gets converted to
an integer (it is parsed) using int.Parse(…). The result is kept in a variable with name a.

The next command var area = a * a; keeps in a new variable area the result of the multiplication
of a by a.

https://youtu.be/WPlQ5HYBGJQ
https://youtu.be/3TC2F-ffw34
https://youtu.be/gdYTotTFVgA
https://judge.softuni.org/Contests/Practice/Index/504#0

64 Programming Basics with C#

The next command Console.Write("Square area = "); prints the given text without going to
the next line. Again, useConsole.Write(…), and not Console.WriteLine(…), and this way the

cursor stays on the same line in order to print the calculated area of the square afterwards.

The last command Console.WriteLine(area); prints the calculated value of the variable area.

Data Types and Variables
In programming, each variable stores a certain value of a particular type. For example, data types can
be number, letter, text (string), date, color, image, list, etc. Here are some examples of data types:

• integer: 1, 2, 3, 4, 5, 20, …

• float: 0.5, 3.14, -1.5, …

• character (symbol): 'a', 'b', 'c', '@', 'X', …

• text (string): "Hello", "Hi", "How are you?", …

• day of week: Monday, Tuesday, …, Sunday

• date and time: 14-June-1980 6:30:00, 25-Dec-2017 23:17:22

Video: Data Types and Variables

Watch a video lesson about declaring variables: https://youtu.be/p4tedmW8dyw.

Examples: Data Types and Variables

In C# we can use data types to define variables as follows:

int a = 5;
string str = "Some text";
char letter = 'A';
float f = 4.2;

In C#, once a variable is defined, it can change its value many times, but it cannot change its data type
later. Variables may hold only data of their type.

Declaring and Using Variables
We know that computers are machines that process data. All data is stored inside the computer
memory (RAM) in variables. The variables are named areas in the memory, which keep a certain data
type, for example a number or a text. Each of the variables in C# has a name, a type and a value. Here
is how we would declare a variable and assign it with a value at the same time:

Video: Declaring and using Variables

Watch a video lesson about declaring variables: https://youtu.be/g-dG5GobHg0.

Examples: Declaring and using Variables

Example of declaring a variable:

https://youtu.be/p4tedmW8dyw
https://youtu.be/g-dG5GobHg0

Chapter 2.1. Simple Calculations 65

var count = 5;

After being processed, data is again stored in variables (in some place in the memory allocated for our
program):

count = count + 1;

After the above code the variable count changes it value and increases by 1.

Reading Floating Point Numbers from the Console
To read a floating-point number (fractional number, non-integer) from the console use the following
command:

var num = double.Parse(Console.ReadLine());

The above C# code first reads a text line from the console, then converts (parses) it to a floating-point
number.

Video: Reading Floating-Point Numbers

Watch the following video lesson about how to read floating-point numbers from the console:
https://youtu.be/H2waLeIW70A.

Example: Converting Inches into Centimeters

Let's write a program that reads a floating-point number in inches and converts it to centimeters:

Console.Write("Inches = ");
var inches = double.Parse(Console.ReadLine());
var centimeters = inches * 2.54;
Console.Write("Centimeters = ");
Console.WriteLine(centimeters);

Let's start the program and make sure that when a value in inches is entered, we obtain a correct
output in centimeters:

Note that if you enter and invalid number, e.g. "asfd", the program will crash with an error message
(exception). We will learn how to handle exceptions later in the chapter "More Complex Loops".

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#1.

Reading a Text from the Console
To read a text (string) from the console, again, we have to declare a new variable and use the standard
command for reading a text from the console:

https://youtu.be/H2waLeIW70A
https://judge.softuni.org/Contests/Practice/Index/504#1

66 Programming Basics with C#

var str = Console.ReadLine();

By default, the Console.ReadLine(…) method returns a text result – a text line, read from the
console.

• After you read a text from the console, additionally, you can parse the text to an integer by
int.Parse(…) or a floating-point number by double.Parse(…).

• If parsing to a number is not done, each number will simply be text, and we cannot do arithmetic
operations with it.

Video: Reading Text from the Console

Watch a video lesson about how to read text from the console: https://youtu.be/0tzvEdWxZ1k.

Example: Greeting by Name

Let's write a program that asks the user for their name and salutes them with the text "Hello, <name>!".

var name = Console.ReadLine();
Console.WriteLine("Hello, {0}!", name);

In this case the {0} expression is replaced with the first passed argument, which holds the variable
name. If we enter "John", the output will be as follows:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#2.

Printing and Formatting Text and Numbers
In C#, when printing a text, numbers and other data on the console, we can join them by using
templates {0}, {1}, {2} etc. In programming, these templates are called placeholders. This is a simple
example:

Console.WriteLine("{0} + {1} = {2}", 3, 5, 3+5);

The placeholders {0}, {1} and {2} are replaced by the expressions, given after the text. The result
from the above code is:

3 + 5 = 8

Video: Printing Text and Numbers

Watch a video lesson about how to print text and numbers together on the console:
https://youtu.be/tSTwwaQpy9g.

https://youtu.be/0tzvEdWxZ1k
https://judge.softuni.org/Contests/Practice/Index/504#2
https://youtu.be/tSTwwaQpy9g

Chapter 2.1. Simple Calculations 67

Example: Printing Text and Numbers

var firstName = Console.ReadLine();
var lastName = Console.ReadLine();
var age = int.Parse(Console.ReadLine());
var town = Console.ReadLine();
Console.WriteLine("You are {0} {1}, a {2}-years old person from {3}.",
 firstName, lastName, age, town);

This is the result we are going to obtain after the execution of this example:

Notice how every variable should be passed in the order, in which we want it to be printed. Practically,
the template (placeholder) accepts variables of any type.

It is possible for a template to be used multiple times and it is not necessary for the templates to be
numbered sequentially. Here is an example:

Console.WriteLine("{1} + {1} = {0}", 1+1, 1);

The result is:

1 + 1 = 2

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#3.

Using the Dollar String Interpolation

We can format text in C# using also the following $ syntax. It provides simplifies text formatting:

var a = 4.5;
Console.WriteLine($"Square size = {a}");
Console.WriteLine($"Square area = {a * a}");

The output from the above code is as follows:

Square size = 4.5
Square area = 20.25

The $ prefix before a string in C# enables the so called "string interpolation": replacing all expressions,
staying in curly brackets { } in the text with their values.

Using the dollar string interpolation syntax, the last example can be rewritten like this:

var firstName = Console.ReadLine();
var lastName = Console.ReadLine();

https://judge.softuni.org/Contests/Practice/Index/504#3

68 Programming Basics with C#

var age = int.Parse(Console.ReadLine());
var town = Console.ReadLine();
Console.WriteLine($"You are {firstName} {lastName}, a {age}-years old
person from {town}.");

Play with the above code and test it in the SoftUni online Judge system: https://judge.softuni.
org/Contests/Practice/Index/504#3.

Arithmetic Operations
Let's examine the basic arithmetic operations in programming. We can add, subtract, multiply and
divide numbers using the operators +, -, * and /.

Video: Arithmetic Operators

Watch a video lesson about the arithmetic operators: https://youtu.be/XOtEuEUbA4M.

Summing up Numbers: Operator +

We can sum up numbers using the + operator:

var a = 5;
var b = 7;
var sum = a + b; // the result is 12

Subtracting Numbers: Operator -

Subtracting numbers is done using the - operator:

var a = int.Parse(Console.ReadLine());
var b = int.Parse(Console.ReadLine());
var result = a - b;
Console.WriteLine(result);

Here is the result of the execution of this program (with numbers 10 and 3):

Multiplying Numbers: Operator *

For multiplication of numbers we use the * operator:

var a = 5;
var b = 7;
var product = a * b; // 35

Dividing Numbers: Operator /

https://judge.softuni.org/Contests/Practice/Index/504#3
https://judge.softuni.org/Contests/Practice/Index/504#3
https://youtu.be/XOtEuEUbA4M

Chapter 2.1. Simple Calculations 69

Dividing numbers is done using the / operator. It works differently with integers and floating-point
numbers.

• When we divide two integers, an integer division is applied, and the obtained output is
without its fractional part. Example: 11 / 3 = 3.

• When we divide two numbers and at least one of them is a float number, a floating division is
applied, and the obtained result is a float number, just like in math. Example 11 / 4.0 = 2.75.
When it cannot be done with exact precision, the result is being rounded, for example 11.0 /
3 = 3.66666666666667.

• The integer division by 0 causes an exception during runtime (runtime exception).

• Float numbers divided by 0 do not cause an exception and the result is +/- infinity or a special
value NaN. Example 5 / 0.0 = ∞.

Here are a few examples with the division operator:

var a = 25;
var i = a / 4; // we are applying an integer division:
 // the result of this operation will be 6 –
 // the fractional part will be cut,
 // because we are dividing integers
var f = a / 4.0; // 6.25 – floating division. We have set the
 // number 4 to be interpreted
 // as a float by adding a decimal separator
 // followed by zero
var error = a / 0; // Error: Integer divided by zero

Dividing Integers

Let's examine a few examples for integer division (remember that when we divide integers in C# the
result is an integer):

var a = 25;
Console.WriteLine(a / 4); // Integer result: 6
Console.WriteLine(a / 0); // Error: divide by 0

Dividing Floating-Point Numbers

Let's look at a few examples for floating division. When we divide floating point numbers, the result
is always a float number and the division never fails, and works correctly with the special values +∞
and -∞:

var a = 15;
Console.WriteLine(a / 2.0); // Float result: 7.5
Console.WriteLine(a / 0.0); // Result: Infinity
Console.WriteLine(-a / 0.0); // Result: -Infinity
Console.WriteLine(0.0 / 0.0); // Result: NaN (Not a Number), e.g. the
 / / result from
 // the operation is not a valid numeric value

When printing the values ∞ and -∞, the console output may be ?, because the console in Windows
does not work correctly with Unicode and breaks most of the non-standard symbols, letters and
special characters. The example above would most probably give the following result:

70 Programming Basics with C#

7.5
?
-?
NaN

Concatenating Text and Numbers
Besides for summing up numbers, the operator + is also used for joining pieces of text (concatenation
of two strings one after another). In programming, joining two pieces of text is called "concatenation".
Here is how we can concatenate a text with a number by the + operator:

var firstName = "Maria";
var lastName = "Ivanova";
var age = 19;
var str = firstName + " " + lastName + " @ " + age;
Console.WriteLine(str); // Maria Ivanova @ 19

Video: Concatenating Text and Numbers

Watch a video lesson about concatenating text and numbers: https://youtu.be/vPI-V2NG_CU.

Examples: Concatenating Text and Numbers

Here is another example of concatenating text and numbers:

var a = 1.5;
var b = 2.5;
var sum = "The sum is: " + a + b;
Console.WriteLine(sum); // The sum is: 1.52.5

Did you notice something strange? Maybe you expected the numbers a and b to be summed? Actually,
the concatenation works from right to left and the result above is absolutely correct.

If we want to sum the numbers, we have to use brackets, in order to change the order of execution
of the operations:

var a = 1.5;
var b = 2.5;
var sum = "The sum is: " + (a + b);
Console.WriteLine(sum); // The sum is: 4

Numerical Expressions
In programming, we can calculate numerical expressions, for example:

var expr = (3 + 5) * (4 – 2);

The standard rule for priorities of arithmetic operations is applied: multiplying and dividing are always
done before adding and subtracting. In case of an expression in brackets, it is calculated first, but we
already know all of that from school math.

https://youtu.be/vPI-V2NG_CU

Chapter 2.1. Simple Calculations 71

Video: Numerical Expressions

Watch a video lesson about numerical expressions: https://youtu.be/6MPxlOCsPdw.

Example: Calculating Trapezoid Area

Let's write a program that inputs the lengths of the two bases of a trapezoid and its height (one
floating point number per line) and calculates the area of the trapezoid by the standard math formula:

var b1 = double.Parse(Console.ReadLine());
var b2 = double.Parse(Console.ReadLine());
var h = double.Parse(Console.ReadLine());
var area = (b1 + b2) * h / 2.0;
Console.WriteLine("Trapezoid area = " + area);

If we start the program and enter values for the sides: 3, 4 and 5, we will obtain the following result:

3
4
5
Trapezoid area = 17.5

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#4.

Example: Circle Area and Perimeter

Let's write a program that calculates a circle area and perimeter by reading its radius r. Formulas:

• Area = π * r * r

• Perimeter = 2 * π * r

• π ≈ 3.14159265358979323846…

Console.Write("Enter circle radius. r = ");
var r = double.Parse(Console.ReadLine());
Console.WriteLine("Area = " + Math.PI * r * r);
// Math.PI – built-in constant for π in C#
Console.WriteLine("Perimeter = " + 2 * Math.PI * r);

Let's test the program with radius r = 10:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#5.

https://youtu.be/6MPxlOCsPdw
https://judge.softuni.org/Contests/Practice/Index/504#4
https://judge.softuni.org/Contests/Practice/Index/504#5

72 Programming Basics with C#

Example: 2D Rectangle Area

A rectangle is given with the coordinates of two of its opposite
angles. Calculate its area and perimeter (see the screenshot).

In this task, we have to consider that if we subtract the smaller
x from the bigger x, we will obtain the length of the rectangle.
Identically, if we subtract the smaller y from the bigger y, we
will obtain the height of the rectangle. What is left is to multiply
both sides. Here is an example of an implementation of the
described logic:

var x1 = double.Parse(Console.ReadLine());
var y1 = double.Parse(Console.ReadLine());
var x2 = double.Parse(Console.ReadLine());
var y2 = double.Parse(Console.ReadLine());

// Calculating the sides of the rectangle:
var width = Math.Max(x1, x2) - Math.Min(x1, x2);
var height = Math.Max(y1, y2) - Math.Min(y1, y2);

Console.WriteLine("Area = " + width * height);
Console.WriteLine("Perimeter = " + 2 * (width + height));

We use Math.Max(a, b), to find the higher
value from a and b and identically Math.Min(
a, b) to find the lower of both values.

When the program is executed with the values
from the coordinate system given in the above
example, we obtain the result, shown at the
screenshot.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#6.

Other Expressions

Expressions in C# can be not only numerical, but also can be text expressions, date expressions or
expressions of other type:

var price = 20;
var priceUSD = "$ " + price; // text expression
var priceGBP = price + " GBP";
Console.WriteLine(priceUSD); // $ 20
Console.WriteLine(priceGBP); // 20 GBP

var date = new DateTime(2017, 6, 14);
var dateAfter5days = date.AddDays(5); // 14-Jun-17 (date expression)
Console.WriteLine(dateAfter5days); // 19-Jun-17 00:00:00

Exercises: Simple Calculations
Let's strengthen the knowledge gained throughout this chapter with a few more exercises.

https://judge.softuni.org/Contests/Practice/Index/504#6

Chapter 2.1. Simple Calculations 73

Video: Chapter Summary

Watch the following video to summarize what we learned in this chapter about working with simple
calculations: https://youtu.be/Zv_c-M_7Gyw.

What We Learned in This Chapter?

Let's summarize what we learned in this chapter:

• Reading a text: var str = Console.ReadLine();

• Reading an integer: var num = int.Parse(Console.ReadLine());

• Reading a floating-point number: var num = double.Parse(Console.ReadLine());

• Calculations with numbers and using the arithmetic operators +, -, *, /, (): var sum = 5 + 3;

• Printing a text by placeholders on the console: Console.WriteLine("{0} + {1} = {2}",
3, 5, 3 + 5);

The Exercises

We have a lot of practical work. Solve the exercises at the end of this chapter to learn how to work
with variables and data types, reading and writing on the console, using data and calculations.

Empty (Blank) Visual Studio Solution

We start by creating an empty solution (Blank Solution) in Visual Studio. The solutions in Visual Studio
combine a group of projects. This opportunity is very convenient, when we want to work on a few
projects and switch quickly between them or we want to unite logically a few interconnected projects.

In the current practical exercise, we will use a “Blank Solution” with a couple of projects to organize
the solutions of the exercises – every task in a separate project and all of them in a common solution.

• We start Visual Studio

• We create a new Blank Solution: [File] -> [New] -> [Project].

https://youtu.be/Zv_c-M_7Gyw

74 Programming Basics with C#

We choose from the templates -> [Other Project Types] -> [Visual Studio Solutions] -> [Blank
Solution] and we give an appropriate name of the project, for example “Simple-Calculations”:

Now we have created an empty Visual Studio Solution (with 0 projects in it):

The purpose of this blank solution is to add a project per problem from the exercises.

Problem: Calculating Square Area

The first exercise from this topic is the following: write a console program that inputs an integer a and
calculates the area of a square with side a. The task is trivial and easy: input a number from the
console, multiply it by itself and print the obtained result on the console.

Chapter 2.1. Simple Calculations 75

Hints and Guidelines

We create a new project in the existing Visual Studio solution. In the Solution Explorer right-click on
Solution 'Simple-Calculations'. Choose [Add] -> [New Project…]:

A dialogue window is going to be opened for choosing the project type for creation. We choose C#
console application with name “Square-Area”:

We already have a solution with one console application in it. What remains is to write the code for
solving this problem. For this purpose, we go to the main method's body Main(string[] args) and
write the following code:

76 Programming Basics with C#

The code inputs an integer using the code
a = int.Parse(Console.ReadLine()),
afterwards it calculates area = a * a and
finally prints the value of the variable area. We
start the program with [Ctrl+F5] and test it with
different input values (see the screenshot).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#0. You have to get
100 points (completely correct solution):

https://judge.softuni.org/Contests/Practice/Index/504#0

Chapter 2.1. Simple Calculations 77

Problem: Inches to Centimeters

Write a program that reads a number from the console (not necessarily an integer) and converts the
number from inches to centimeters. For the purpose it multiplies the inches by 2.54 (because one
inch = 2.54 centimeters).

Hints and Guidelines

First, we create a new C# console project in the solution “Simple-Calculations”. We right-click the
solution in the Solution Explorer and we choose [Add] -> [New Project…]:

Select [Visual C#] -> [Windows] -> [Console Application] and name it “Inches-to-Centimeters”:

78 Programming Basics with C#

Writing Program Code and Starting the Program

Next, we have to write the program code:

Start the program with [Ctrl+F5]. The screenshot shows a sample execution.

Surprise! What is happening? The program doesn't work correctly… Actually, isn't this the previous
program? In Visual Studio the current active project in a solution is marked in semi-black color and it
could be changed:

Setting Up a Startup Project

To switch the mode to automatically go to current project, we right-click the main solution and we
choose [Set StartUp Projects…]:

Chapter 2.1. Simple Calculations 79

A dialog window will open, and you will have to choose [Startup Project] -> [Current Selection]:

And again, we run the program, as usual with [Ctrl+F5]. This time it will start the current open program,
which converts inches to centimeters. It looks like it works correctly:

Switching Between Programs

Now let's switch to the previous program (square area). This happens with a double click on the file
Program.cs from the previous project “Square-Area” in the panel [Solution Explorer] in Visual Studio:

80 Programming Basics with C#

We press again [Ctrl+F5]. This time the other project should start:

We switch back to the “Inches-to-Centimeters” project and start it with [Ctrl+F5]:

Switching between projects is very easy, isn't it? Just choose the file with the source code of the
program, double click it and when it starts, the program from the current file is being executed.

Testing a Program Locally

Let's test with floating point numbers, for example with 2.5:

Depending on the regional settings of the operation system, it is possible instead of
using a decimal point (US settings), to use a decimal comma (BG settings).

If the program expects a decimal point and instead a number with a decimal comma you enter the
opposite (to enter a decimal point, when a decimal comma is expected), an error will be produced:

Chapter 2.1. Simple Calculations 81

It is recommended to change the settings of your computer to use a decimal point:

82 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#1. The solution
should be accepted as a completely correct:

Problem: Greeting by Name

Write a program that reads a person's name and prints Hello, <name>!, where <name> is the name
entered earlier.

Hints and Guidelines

First, we create a new C# console project with name “Greeting” in the solution “Simple-Calculations”:

Next, we have to write the code of the program. If you have any difficulties, you can use the code
from the example below:

Run the program with [Ctrl+F5] and test if it works:

https://judge.softuni.org/Contests/Practice/Index/504#1

Chapter 2.1. Simple Calculations 83

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#2.

Problem: Concatenating Text and Numbers

Write a C# program, that reads a first name, last name, age and city from the console and prints a
message of the following kind: You are <firstName> <lastName>, a <age>-years old person
from <town>.

Hints and Guidelines

We add to the existing Visual Studio solution one more console C# project with name “Concatenate-
Data”. We write the code which reads the input from the console:

The code that prints the message described in the problem requirements should be finished.

In the picture above the code is blurred on purpose, in order for you to think of a way to finish it
yourself.

Next, the solution should be tested locally using [Ctrl+F5] and by entering a sample input data.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#3.

Problem: Trapezoid Area

Write a program that reads three numbers from the console b1, b2 and h and calculates the area of
a trapezoid with bases b1 and b2 and height h. The formula for trapezoid area is (b1 + b2) * h / 2.

The figure below shows a trapezoid with bases 8 and 13 and height 7. It has an area (8 + 13) * 7 / 2
= 73.5.

https://judge.softuni.org/Contests/Practice/Index/504#2
https://judge.softuni.org/Contests/Practice/Index/504#3

84 Programming Basics with C#

Hints and Guidelines

Again, we have to add to the existing Visual Studio solution another console C# project with name
"Trapezoid-Area" and write the code that reads the input from the console, calculates the trapezoid
area and prints it:

The code in the picture is purposely blurred, in order for you to give it a thought and finish it yourself.

Test your solution locally using [Ctrl+F5] and enter an exemplary data.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#4.

Problem: Circle Area and Perimeter

Write a program that reads from the console a number r and calculates and prints the area and
perimeter of a circle with radius r.

Input and Output

Input Output Input Output

3
Area = 28.2743338823081
Perimeter = 18.8495559215388

4.5

Area = 63.6172512351933
Perimeter = 28.2743338823081

Video: Circle Perimeter and Area

Watch the video lesson about calculating circle perimeter and area: https://youtu.be/7W6teq9IVGU.

Hints and Guidelines

For the calculations you may use the following formulas:

• Area = Math.PI * r * r.

• Perimeter = 2 * Math.PI * r.

Testing in the Judge System

Test your solution in the SoftUni automated judge system:
https://judge.softuni.org/Contests/Practice/Index/504#5.

Problem: Rectangle Area

A rectangle is defined by the coordinates of both of its
opposite corners (x1, y1) – (x2, y2). Calculate its area and
perimeter. The input is read from the console. The numbers
x1, y1, x2 and y2 are given one per line. The output is printed
on the console and it has to contain two lines, each with one
number – the area and the perimeter.

https://judge.softuni.org/Contests/Practice/Index/504#4
https://youtu.be/7W6teq9IVGU
https://judge.softuni.org/Contests/Practice/Index/504#5

Chapter 2.1. Simple Calculations 85

Sample Input and Output

Input Output Input Output Input Output

60
20
10
50

1500
160

 30
 40
 70
 -10

 2000
 180

 600.25
500.75
100.50
-200.5

 350449.6875
 2402

Video: Rectangle Area

Watch the video lesson about calculating rectangle area: https://youtu.be/IHb_Tz-EVT4.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#6.

Problem: Triangle Area

Write a program that reads from the console a side and height of a triangle and calculates its area.
Use the formula for triangle area: area = a * h / 2. Round the result to 2 digits after the decimal point
using Math.Round(area, 2).

Sample Input and Output

Input Output Input Output

20
30

Triangle area = 300
 15
 35

 Triangle area = 262.5

7.75
8.45

Triangle area = 32.74
 1.23456
 4.56789

 Triangle area = 2.82

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#7.

Problem: Converter – from °C Degrees to °F Degrees

Write a program that reads degrees on Celsius scale (°C) and converts them to degrees on Fahrenheit
scale (°F). Look on the Internet for a proper formula to do the calculations. Round the result to 2 digits
after the decimal point.

Here are a few examples:

Sample Input and Output

Input Output Input Output Input Output Input Output

25 77 0 32 -5.5 22.1 32.3 90.14

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#8.

https://youtu.be/IHb_Tz-EVT4
https://judge.softuni.org/Contests/Practice/Index/504#6
https://judge.softuni.org/Contests/Practice/Index/504#7
http://bfy.tw/MrFX
https://judge.softuni.org/Contests/Practice/Index/504#8

86 Programming Basics with C#

Problem: Converter – from Radians to Degrees

Write a program, that reads an angle in radians (rad) and converts it to degrees (deg). Look for a

proper formula on the Internet. The number π in C# programs is available through Math.PI. Round
the result to the nearest integer using the Math.Round(…) method.

Sample Input and Output

Input Output

Input Output

Input Output

Input Output

3.1416 180 6.2832 360 0.7854 45 0.5236 30

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#9.

Problem: Converter – USD to BGN

Write a program for conversion of US dollars (USD) into Bulgarian levs (BGN). Round the result to 2
digits after the decimal point, like it is shown at the examples below. Use a fixed rate between a dollar
(USD) and levs (BGN): 1 USD = 1.79549 BGN.

Sample Input and Output

Input Output Input Output Input Output

20 35.91 BGN 100 179.55 BGN 12.5 22.44 BGN

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#10.

Problem: * Currency Converter

Write a program for conversion of money from one currency into another. It has to support the
following currencies: BGN, USD, EUR, GBP. Use the following fixed currency rates:

Rate USD EUR GBP

1 BGN 1.79549 1.95583 2.53405

The input is sum for conversion, input currency and output currency. The output is one number – the
converted value of the above currency rates, rounded 2 digits after the decimal point.

Sample Input and Output

Input Output Input Output Input Output Input Output

20
USD
BGN

35.91
BGN

 12.35
EUR
GBP

9.53
GBP

 100

BGN

EUR

51.13

EUR

 150.35

USD

EUR

138.02

EUR

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#11.

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Degree_%28angle%29
https://judge.softuni.org/Contests/Practice/Index/504#9
https://judge.softuni.org/Contests/Practice/Index/504#10
https://judge.softuni.org/Contests/Practice/Index/504#11

Chapter 2.1. Simple Calculations 87

Problem: ** Date Calculations – 1000 Days on the Earth

Write a program that enters a birth date in format dd-MM-yyyy and calculates the date on which

1000 days are turned since this birth date and prints it in the same format.

Sample Input and Output

Input Output Input Output Input Output

25-02-1995 20-11-1997 14-06-1980 10-03-1983 30-12-2002 24-09-2005

07-11-2003 02-08-2006 01-01-2012 26-09-2014 09-11-2003 05-08-2006

Hints and Guidelines

• Look for information about the data type DateTime in C# and in particular look at the methods

ParseExact(str, format), AddDays(count) and ToString(format). With their help you
can solve the problem without the need to calculate days, months and leap years.

• Don't print anything additional on the console except for the wanted date!

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/504#12.

Lab: GUI Applications with Numerical Expressions
To exercise working with variables and calculations with operators and numerical expressions, we will
make something interesting: we will develop a desktop application with graphical user interface. In it,
we will use calculations with floating point numbers.

Graphical Application: Converter from BGN to EUR

We need to create a graphical application (GUI application) that calculates the value in Euro (EUR) of
monetary amount given in Bulgarian levs (BGN). By changing the amount in BGN, the amount in EUR
has to be recalculated automatically (we use a fixed rate BGN / EUR: 1.95583).

This exercise goes beyond the material learned in this book and its purpose is not to teach you how
to program GUI applications, but to strengthen your interest in software development. Let's get to
work.

Video: GUI Converter from BGN to EUR

Watch the following video lesson to learn how to build the Windows Forms based GUI application to
convert BGN to EUR: https://youtu.be/xWbDjzLsu9U.

https://judge.softuni.org/Contests/Practice/Index/504#12
https://youtu.be/xWbDjzLsu9U

88 Programming Basics with C#

Creating a New C# Project

We add to the existing Visual Studio solution one more project. This time we create a Windows Forms
application with C# named "BGN-to-EUR-Converter":

Adding UI Controls

We arrange the following UI (user interface) controls in the format:

• NumericUpDown with name numericUpDownAmount – it will enter the amount for conversion

• Label with name labelResult – it will show the result after conversion

• Two more Label components, serving only for static representation of a text

The graphical editor for user interface might look similar to this:

We do the following settings of the format and the separate controls:

Chapter 2.1. Simple Calculations 89

Setting Picture

FormConverter:
Text = "BGN to EUR",
Font.Size = 12,
MaximizeBox = False,
MinimizeBox = False,
FormBorderStyle = FixedSingle

numericUpDownAmount:
Value = 1,
Minimum = 0,
Maximum = 10000000,
TextAlign = Right,
DecimalPlaces = 2

labelResult:
AutoSize = False,
BackColor = PaleGreen,
TextAlign = MiddleCenter,
Font.Size = 14,
Font.Bold = True

Events and Event Handlers

We define the following event handlers in the controls:

After this we catch the following events:

• FormConverter.Load (by double-clicking with the mouse)

• numericUpDownAmount.ValueChanged (by double-clicking on NumericUpDown control)

• numericUpDownAmount.KeyUp (we choose Events from the dashboard Properties and
double-click on KeyUp)

90 Programming Basics with C#

The event Form.Load is executed when the program is started, before the app window is shown. The
event NumericUpDown.ValueChanged is executed when a change in the value inside the field for

entering a number occurs. The event NumericUpDown.KeyUp is executed after pressing a key in the
field that enters a number. On the occurrence of each of these events, we will recalculate the result.
To catch an event, we use the events icon (Events) in the [Properties] window in Visual Studio:

Writing the Program Code

We will use the following C# code for handling events:

private void FormConverter_Load(object sender, EventArgs e)
{
 ConvertCurrency();
}

private void numericUpDownAmount_ValueChanged(object sender, EventArgs e)
{
 ConvertCurrency();
}

private void numericUpDownAmount_KeyUp(object sender, KeyEventArgs e)
{
 ConvertCurrency();
}

All of the caught events call the method ConvertCurrency(), which converts the given sum from
BGN to EUR and shows the result in the green box. We have to write the code (program logic) for
the conversion:

private void ConvertCurrency()
{
 var amountBGN = this.numericUpDownAmount.Value;
 var amountEUR = amountBGN * 1.95583m;
 this.labelResult.Text = amountBGN + " BGN = " +
 Math.Round(amountEUR, 2) + " EUR";
}

Testing the Application

Finally, we start the project with [Ctrl+F5] and test if it works correctly.

If you have any problems with the example project above, you can ask in the SoftUni official discussion
forum (http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

Graphical Application: * Catch the Button!

Create a fun graphical application “catch the button”: a form consisting of one button. Upon moving
the mouse cursor onto the button, it moves to a random position. This way it creates the impression

http://forum.softuni.org/
https://fb.com/softuni.org

Chapter 2.1. Simple Calculations 91

that "the button runs form the mouse and it is hard to catch". When the button gets “caught”, a
congratulations message is shown.

Hints and Guidelines

Write an event handler Button.MouseEnter and move the button to a random position. Use the
random numbers generator Random. The position of the button is set using the Location property.
To make sure the new position of the button is within the form's borders, you can make calculations
based on the size of the form, which is available from the ClientSize property.

You may use the following sample code:

private void buttonCatchMe_MouseEnter(object sender, EventArgs e)
{
 Random rand = new Random();
 var maxWidth = this.ClientSize.Width - buttonCatchMe.ClientSize.Width;
 var maxHeight = this.ClientSize.Height - buttonCatchMe.ClientSize.Height;
 this.buttonCatchMe.Location = new Point(
 rand.Next(maxWidth), rand.Next(maxHeight));
}

Be active, be curious, experiment, play, learn, enjoy!

Useful Web Sites for C# Developers
C# developers use Internet resources constantly in their daily job. They search in Internet, read
developer's news, sites and blogs and discuss technical questions with their colleagues.

In this video lesson we shall give you a few popular Web sites for C# developers:
https://youtu.be/DdNo8iofjHw.

The Web sites mentioned in the video are very helpful for the beginners in C# programming and are
highly recommended:

• https://www.dotnetperls.com
• https://stackoverflow.com
• https://docs.microsoft.com/dotnet/csharp

https://youtu.be/DdNo8iofjHw
https://www.dotnetperls.com/
https://stackoverflow.com/
https://docs.microsoft.com/dotnet/csharp

https://softuni.org

Chapter 2.2. Simple Calculations – Exam
Problems
In the previous chapter, we explained how to work with the system console – how to read numbers
from it and how to print the output. We went through the main arithmetical operations and briefly
mentioned data types. Now, we are going to practice what we have learned by solving a few more
complex exam problems.

Simple Calculations – Quick Review
Before jumping into the practical problems, let's first make a quick review of what we learned in the
previous chapter.

Reading Numbers from the Console

Before going to the tasks, we are going to revise the most important aspects of what we have studied
in the previous chapter. We will start by reading numbers from the console.

Reading an Integer

We need to create a variable to store the integer (for example, num) and use a standard command for
reading input from the console Console.ReadLine(), combined with the function int.Parse(…)
which converts string to an integer:

var num = int.Parse(Console.ReadLine());

Reading a Floating-Point Number

We read a floating-point number, the same way we read an integer one, but this time we use the
function double.Parse(…):

var num = double.Parse(Console.ReadLine());

Printing Text Using Placeholders

Placeholder is an expression which is replaced with a particular value while printing an output. The
methods Console.Write(…) / WriteLine(…) supports printing a string based on a placeholder,
where the first argument is the formatted string, followed by the number of arguments, equal to the
number of placeholders.

Console.WriteLine("You are {0} {1}, a {2}-years old person from {3}.",
 firstName, lastName, age, town);

Arithmetic Operators

Let' s revise the main arithmetic operators for simple calculations.

Operator +

var result = 3 + 5; // the result is 8

94 Programming Basics with C#

Operator -

var result = 3 - 5; // the result is -2

Operator *

var result = 3 * 5; // the result is 15

Operator /

var result = 7 / 3; // the result is 2 (integer division)
var result2 = 5 / 2.0; // the result is 2.5 (floating-point division)

String Concatenation

By using the operator + between string variables (or between a string and a number), concatenation
is being performed (combining strings).

var firstName = "Ivan";
var lastName = "Ivanov";
var age = 19;
var str = firstName + " " + lastName + " is " + age + " years old";
// Ivan Ivanov is 19 years old

Exam Problems
Now, after having revised how to make simple calculations and how to read and print numbers from
the console, let' s go to the tasks. We will solve a few problems from a SoftUni entrance exam.

Problem: Training Lab

A training lab has a rectangular size l x w meters, without columns on the inside. The hall is divided
into two parts: left and right, with a hallway approximately in the middle. In both parts, there are rows
with desks. In the back of the hall, there is a big entrance door. In the front, there is a podium for the
lecturer. A single working place takes up 70 x 120 cm (a table with size 70 x 40 cm + space for a chair
with size 70 x 80 cm). The hallway width is at least 100 cm. It is calculated that due to the entrance
door (which has 160 cm opening), exactly one working space is lost, and due to the podium (which
has size of 160 x 120 cm), exactly two working spaces are lost. Write a program that reads the size
of the training lab as input parameters and calculates the number of working places in it (look at the
figure).

Input Data

Two numbers are read from the console, one per line: l (length in meters) and w (width in meters).

Constraints: 3 ≤ w ≤ l ≤ 100.

Output Data

Print an integer: the number of working places in the training lab.

Sample Input and Output

Chapter 2.2. Simple Calculations – Exam Problems 95

Input Output Figure

15
8.9

129

8.4
5.2

39

Clarification of the Examples

In the first example, the hall length is 1500 cm. 12 rows can be situated in it (12 * 120 cm = 1440 +
60 cm difference). The hall width is 890 cm. 100 cm of them are for the hallway in the middle. The
rest 790 cm can be situated by 11 desks per row (11 * 70 cm = 770 cm + 20 cm difference). Number
of places = 12 * 11 - 3 = 132 - 3 = 129 (we have 12 rows with 11 working places = 132 minus 3
places for podium and entrance door).

In the second example, the hall length is 840 cm. 7 rows can be situated in it (7 * 120 cm = 840, no
difference). The hall width is 520 cm. 100 cm from them are for the hallway in the middle. The rest
420 cm can be situated by 6 desks per row (6 * 70 cm = 420 cm, no difference). Number of places =
7 * 6 - 3 = 42 - 3 = 39 (we have 7 rows with 6 working places = 42 minus 3 places for podium and
entrance door).

Hints and Guidelines

Try to solve the problem on your own first. If you do not succeed, go through the hints.

Idea for Solution

As with any programming task, it is important to build an idea for its solution, before having started
to write code. Let's carefully go through the problem requirements. We have to write a program that
calculates the number of working places in a training lab, where the number depends on the hall
length and height. We notice that the provided input will be in meters and the information about how
much space the working places and hallway take, will be in centimeters. To do the calculations, we
will use the same measuring units, no matter whether we choose to convert length and height into
centimeters or the other data in meters. The first option is used for the presented solution.

96 Programming Basics with C#

Next, we have to calculate how many columns and how many rows with desks will fit. We can
calculate the columns by subtracting the width by the necessary space for the hallway (100 cm) and
divide the difference by 70 cm (the length of a working place). We find the rows by dividing the length
by 120 cm. Both operations can result in a real number with whole and fractional part, but we have
to store only the whole part in a variable. In the end, we multiply the number of rows by the number
of columns and divide it by 3 (the lost places for entrance door and podium). This is how we calculate
the needed value.

Choosing Data Types

From the example, we see that a real number with whole and fractional part can be given as an input,
therefore, it is not appropriate to choose data type int. This is why we use double. Choosing data
type for the next variables depends on the method we choose to solve the problem. As with any
programming task, this one has more than one way to be solved. Two methods will be shown here.

Solution – Variant I

It is time to go to the solution. We can divide it into three smaller tasks:

• Reading input from the console.

• Doing the calculations.

• Printing the output on the console.

The first thing we have to do is read the input from the console. With Console.
ReadLine() we read the values from the console and with the function double.Parse(…) string is
converted into double.

Let's move to the calculations. The special part here is that after having divided the numbers, we have
to store only the whole part of the result in a variable.

Search in Google! Whenever we have an idea how to solve a particular problem, but
we do not know how to write it in C# or we are dealing with one that many other
people have had before us, the easiest way to solve it is by looking for information on
the Internet.

In this case, we can try with the following search: "c# get whole number part of double". One possible
way is to use the method Math.Truncate(…) as it works with double data types. For the number
of rows and columns we create variables of the same type.

Solution – Variant II

Second variant: As we already know, the operator for division / operates differently on integers and
decimals. When dividing integer with integer, the result is also an integer. Therefore, we can search
how to convert the real numbers that we have as values for the height and the width, into integers
and then divide them.

https://www.google.com/?q=c%23+get+whole+number+part+of+double

Chapter 2.2. Simple Calculations – Exam Problems 97

In this case, there could be data loss after having removed the fractional part, so it is necessary that
it is converted expressly (explicit typecasting). We use the operator for converting data (type) by
replacing the word type with the needed data type and place it before the variable.

With Console.WriteLine(…) we print the result on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/505#0.

Problem: Vegetable Market

A gardener is selling his harvest on the vegetables market. He is selling vegetables for N coins per
kilogram and fruits for M coins per kilogram. Write a program that calculates the earnings of the
harvest in Euro (EUR). Assume the EUR / coin rate is fixed: 1 Euro == 1.94 coins.

Input Data

Four numbers are read from the console, one per line:

• First line: vegetable price per kilogram – a floating-point number.

• Second line: fruit price per kilogram – a floating-point number.

• Third line: total kilograms of vegetables – an integer.

• Fourth line: total kilograms of fruits – an integer.

Constraints: all numbers will be within the range from 0.00 to 1000.00.

Output Data

Print on the console one floating-point number: the earnings of all fruits and vegetables in Euro.

Sample Input and Output

Input Output Explanation Input Output

0.194
19.4
10
10

101 Vegetables cost: 0.194 coins * 10 kg = 1.94 coins
Fruits cost: 19.4 coins * 10 kg = 194 coins
Total: 195.94 coins = 101 euro (= 101 * 1.94)

1.5
2.5
10
10

20.6185567010309

Hints and Guidelines

First, we will give a few ideas and particular hints for solving the problem, followed by the essential
part of the code.

Idea for Solution

Let's first go through the problem requirements. In this case, we have to calculate the total income
from the harvest. It equals the sum of the earnings from the fruits and vegetables which we can
calculate by multiplying the price per kilogram by the quantity. The input is given in coins and the

https://judge.softuni.org/Contests/Practice/Index/505#0

98 Programming Basics with C#

output should be in EUR. It is assumed that 1 Euro equals 1.94 coins, therefore, in order to get the
wanted output value, we have to divide the sum by 1.94.

Choosing Data Types

After we have a clear idea of how to solve the task, we can continue with choosing appropriate data
types. Let's go through the input: we have two integers for total kilograms of vegetables and fruits,
therefore, the variables we declare to store their values will be of int type. The prices of the fruits
and vegetables are said to be floating-point numbers and therefore, the variables will be double.

We can also declare two variables to store the income from the fruits and vegetables separately. As
we are multiplying a variable of int type (total kilograms) with one of double type (price), the result
should also be of double type. Let's clarify that: generally, operators work with arguments of the
same type. Therefore, in order to multiply values of different data types, we have to convert them
into the same type. When there are types of different scopes in one expression, the one with the
highest scope is the one the other types are converted to, in this case, double. As there isn't danger
of data loss, the conversion is implicit and is automatically done by the compiler.

The output should also be a floating-point number and therefore, the result will be stored in a variable
of double type.

Solution

It is time to get to the solution. We can divide it into three smaller tasks:

• Reading input from the console.

• Doing the calculations.

• Printing the output on the console.

In order to read the input, we declare variables, which we have to name carefully, so that they can
give us a hint about the values they store. With Console.ReadLine(…), we read values from the
console and with the functions int.Parse(…) and double.Parse(…), we convert the particular

string value into int and double.

We do the necessary calculations:

The task does not specify special output format. Therefore, we just have to calculate the requested
value and print it on the console. As in mathematics and so in programming, division has a priority
over addition. However, in this task, first we have to calculate the sum of the two input values and
then divide by 1.94. In order to give priority to addition, we can use brackets in the expression. With
Console.WriteLine(…) we print the output on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/505#1.

https://judge.softuni.org/Contests/Practice/Index/505#1

Chapter 2.2. Simple Calculations – Exam Problems 99

Problem: Change Tiles

The tiles on the ground in front of an apartment building need changing. The ground has a square
shape with side of N meters. The tiles are "W" meters wide and "L" meters long. There is one bench
on the ground with width of “M” meters and length of “O” meters. The tiles under it do not need to
be replaced. Each tile is replaced for 0.2 minutes. Write a program that reads the size of the ground,
the tiles and the bench from the console, and calculates how many tiles are needed to cover the
ground and what is the total time for replacing the tiles.

Example: ground with size 20 m has area of 400 m2. A bench that is 1 m wide and 2 m long, has area
of 2 m2. One tile is 5 m wide, 4 m long and has area of 20 m2. The space that needs to be covered is
400 - 2 = 398 m2. Therefore, 398 / 20 = 19.90 tiles are necessary. The time needed is 19.90 * 0.2 =
3.98 minutes.

Input Data

The input data comes as 5 numbers, which are read from the console:

• N – length of a side of the ground within the range of [1 … 100].

• W – width per tile within the range of [0.1 … 10.00].

• L – length per tile within the range of [0.1 … 10.00].

• М – width of the bench within the range of [0 … 10].

• О – length of the bench within the range of [0 … 10].

Output Data

Print on the console two numbers: number of tiles needed for the repair and the total time for
changing them, each on a new line.

Sample Input and Output

Input Output Comments Input Output

20
5
4
1
2

19.9
3.98

Total area = 20 * 20 = 400.
Area of the bench = 1 * 2 = 2.
Area for covering = 400 - 2 = 398.
Area of tiles = 5 * 4 = 20.
Needed tiles = 398 / 20 = 19.9.
Needed time = 19.9 * 0.2 = 3.98.

40
0.8
0.6
3
5

3302.08333333333
660.416666666667

Hints and Guidelines

Let's make a draft to clarify the task requirements. It can look like at the figure.

Idea for Solution

It is required to calculate the number of tiles that have to be changed, as well as the total time for
replacing them. In order to find the number of tiles, we have to calculate the area that needs to be
covered and divide it by the area per tile. The ground is square, therefore, we find the total area by
multiplying its side by its value N * N. After that, we calculate the area that the bench takes up by
multiplying its two sides as well M * O. After subtracting the area of the bench from the area of the
whole ground, we obtain the area that needs to be repaired.

We calculate the area of a single tile by multiplying its two sides with one another W * L. As we
already stated, now we have to divide the area for covering by the area of a single tile. This way, we

100 Programming Basics with C#

find the number of necessary tiles which we multiply by 0.2 (the time needed for changing a tile).
Now, we have the wanted output.

Choosing Data Types

The length of the side of the ground, the
width and the length of the bench, will be
given as integers, therefore, in order to
store their values, we can declare variables
of int type. We will be given floating-
point numbers for the width and the
length of the tiles and this is why we will
use double. The output will be a floating-
point number as well, so the variables will
be of double type as well.

Reading the Input Data

As in the previous tasks, we can divide the
solution into three smaller tasks:

• Reading the input from the console.

• Doing the calculations.

• Printing the output on the console.

The first thing we have to do is go through the input of the task. It is important to pay attention to
the sequence they are given in. With Console.ReadLine(…) we read values from the console and

with int.Parse(…) and double.Parse(…), we convert the string values into int or double.

Performing the Calculations

After we have initialized the variables and have stored the corresponding values in them, we move to
the calculations. As the values of the variables n, a and b are stored in variables of type int, we can
also declare variables of the same type for the results.

The variables w and h are of type double, therefore, for the area of a single tile, we create a variable
of the same type. Finally, we calculate the values that we have to print on the console. The number
of necessary tiles is obtained by dividing the area that needs to be covered by the area of a tile. When

Chapter 2.2. Simple Calculations – Exam Problems 101

dividing the two numbers, one of which is a floating-point number, the result will also be a floating-
point number. Therefore, in order for the calculations to be correct, we store the result in a variable
of type double. The task does not specify special formatting or rounding of the output, so we just
print the values with Console.WriteLine(…).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/505#2.

Problem: Money

Peter lives in Bulgaria and is keen about money exchange, trading, cryptocurrencies and financial
markets. Some time ago, Peter bought Bitcoins and paid for them in Bulgarian levs (BGN). Now, he is
going on vacation in Europe and he needs Euro (EUR). Apart from the Bitcoins, he has Chinese yuans
(CNY) as well. Peter wants to exchange his money for Euro for the tour. Write a program that
calculates how much Euro he can buy, depending on the following exchange rates:

• 1 Bitcoin (BTC) = 1168 BGN

• 1 Chinese yuan (CNY) = 0.15 dollars (USD)

• 1 Dollar (USD) = 1.76 BGN

• 1 Euro (EUR) = 1.95 BGN

The exchange office has commission fee within 0% to 5% from the final sum in Euro.

Input Data

Three numbers are read from the console:

• On the first line – number of Bitcoins. Integer within the range of [0 … 20].

• On the second line – number of Chinese yuans. Floating-point number within the range of [0.00
… 50 000.00].

• On the third line – commission fee. Floating-point number within the range of [0.00 … 5.00].

Output Data

Print one number on the console – the result of the exchange of currencies. Rounding is not
necessary.

Sample Input and Output

Input Output Explanation

1
5
5

569.668717948718

1 Bitcoin (BTC) = 1168 BGN

5 Chinese yuan (CNY) = 0.75 dollars

0.75 dollars (USD) = 1.32 BGN

1168 + 1.32 = 1169.32 BGN = 599.651282051282 Euro
(EUR)

https://judge.softuni.org/Contests/Practice/Index/505#2

102 Programming Basics with C#

Input Output Explanation

Commission fee: 5% of 599.651282051282 =
29.9825641025641

Result: 599.651282051282 - 29.9825641025641 =
569.668717948718 Euro

Input Output Input Output

 20
 5678
 2.4

12442.24

7
50200.12
3

10659.47

Hints and Guidelines

Let's first think of the way we can solve the task again, before having started to write code.

Idea for Solution

We see that the number of bitcoins and the number of Chinese yuans will be given in the input. The
output should be in Euro. The exchange rates that we have to work with are specified in the task. We
notice that we can only exchange the sum in BGN to EUR, therefore, we first have to calculate the
whole sum that Peter has in BGN, and then calculate the output.

As we have information for the exchange rate of bitcoins to BGN, we can directly exchange them. On
the other hand, in order to get the value of Chinese yuans in BGN, first we have to exchange them in
dollars, and then the dollars to BGN. Finally, we will sum the two values and calculate how much Euro
that is.

Only the final step is left: calculating the commission fee and subtracting the new sum from the total
one. We will obtain an integer for the commission fee, which will be a particular percent from the
total sum. Let's divide it by 100, so as to calculate its percentage value and then multiply it by the sum
in Euro. We will divide the result from the same sum and print the final sum on the console.

Choosing Data Types

Bitcoins are given as an integer, therefore, we can declare a variable of int type for their value. For

Chinese yuan and commission fee we obtain a floating-point number, therefore, we are going to use
double. As double is the data type with bigger scope, and the output should also be a floating-point
number, we will use it for the other variables we create as well.

Solution

After we have built an idea on how to solve the task and we have chosen the data structures that we
are going to use, it is time to get to writing the code. As in the previous tasks, we can divide the
solution into three smaller tasks:

• Reading input from the console.

• Doing the calculations.

• Printing the output on the console.

We declare the variables that we are going to use and again we have to choose meaningful names,
which are going to give us hints about the values they store. We initialize their values: with
Console.ReadLine(…), we read the input numbers from the console and convert the string entered
by the user to int or double.

Chapter 2.2. Simple Calculations – Exam Problems 103

We do the necessary calculations:

Finally, we calculate the commission fee value and subtract it from the sum in Euro. Let's pay attention
to the way we could write this: Euro -= commission fee * Euro is the short way to write Euro
= Euro - (commission fee * Euro). In this case, we use a combined assignment operator (-=)
that subtracts the value of the operand to the right from the one to the left. The operator for
multiplication (*) has a higher priority than the combined operator, this is why, the expression
commission fee * Euro is performed first and then its value is divided.

The task does not specify special string formatting or rounding the result, therefore, we just have to
calculate the output and print it on the console.

Let's pay attention to something that applies to all other problems of this type: written like that, the
solution of the task is pretty detailed. As the task itself is not too complex, in theory, we could write
one big expression, where right after having taken the input, we calculate the output. For example,
such expression would look like this:

This code would print a correct result, but it is hard to read. It won't be easy to find out how it works
and whether it contains any mistakes, as well as finding such and correcting them. Instead of one
complex expression, it is better to write a few simpler ones and store their values in variables with
appropriate names. This way, the code is cleaner and easily maintainable.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/505#3.

Problem: Daily Earnings

Ivan is a programmer in an American company, and he works at home approximately N days per month
by earning approximately M dollars per day. At the end of the year, Ivan gets a bonus, which equals
2.5 of his monthly salaries. In addition, 25% of his annual salary goes for taxes.

Write a program that calculates what is the amount of Ivan's net average earnings in EUR per day, as
he spends them in Europe. It is assumed that one year has exactly 365 days. The exchange rate of US
dollar (USD) to Euro (EUR) will be read from the console.

Input Data

Three numbers are read from the console.

https://judge.softuni.org/Contests/Practice/Index/505#3

104 Programming Basics with C#

• On the first line – workdays per month. An integer within the range of [5 … 30].

• On the second line – daily earnings. A floating-point number within the range of [10.00 …
2000.00].

• On the third line – exchange rate of USD to EUR: 1 dollar = X euro. A floating-point number
within the range of [0.05 … 4.99].

Output Data

Print one number on the console – the daily earnings in EUR. The result should be rounded up to the
second digit after the decimal point.

Sample Input and Output

Input Output

Input Output

Input Output

21
75.00
0.88

41.30
15
105
1.71

80.24
22
199.99
1.50

196.63

Explanation for the first example:

• One monthly salary = 21 * 75.00 = 1575 dollars.

• Annual income = 1575 * 12 months + 1575 * 2.5 bonus = 22837.5 dollars.

• Taxes = 25% of 22837.5 = 5709.375 dollars.

• Net annual income in USD = 22837.5 - 5709.375 = 17128.125 dollars.

• Net annual income in EUR = 17128.125 dollars * 0.88 = 15072.75 EUR.

• Average earnings per day = 15072.75 / 365 ≈ 41.30 EUR.

Hints and Guidelines

Firstly, we have to analyze the problem and think of a way to solve it. Then, we will choose data types
and, finally, we will write the code.

Idea for Solution

Let's first calculate how much the monthly salary of Ivan is. We do that by multiplying the working
days per month by his daily earnings. Firstly, we multiply the number by 12, so as to calculate his
salary for 12 months, and then, we multiply it by 2.5 in order to calculate the bonus. After having
summed up the two values, we calculate his annual income. Then, we reduce the annual income by
25% taxes. Depending on the exchange rate, we exchange the dollars (USD) to Euro (EUR) and after
that we divide the result by 365 (days per year).

Choosing Data Types

The working days per month are given as an integer, therefore, we can declare a variable of int type
to store their value. For both the earned money and the exchange rate of USD to EUR, we will obtain
a floating-point number, therefore, we will use double. As double is the data type with the higher
scope, and the output should also be a floating-point number, we use double for the other variables
that we create as well.

Reading the Input Data

Chapter 2.2. Simple Calculations – Exam Problems 105

Again: after we have an idea on how to solve the problem and we have considered the data types
that we are going to use, we can start writing the program. As in the previous tasks, we can divide the
solution into three smaller tasks:

• Reading the input from the console.

• Doing the calculations.

• Printing the output on the console.

We declare the variables that we are going to use by trying to choose meaningful names. With
Console.ReadLine(…) we read the input numbers from the console and we convert the input string
to int or double with int/double.Parse(…).

Doing the Calculations

We do the calculations:

We could write an expression that calculates the annual income without brackets as well. As
multiplication is an operation that has a higher priority over addition, it will be performed first. Despite
that, writing brackets is recommended when using more operators, as this way the code is easily
readable and chances of making a mistake are smaller.

Printing the Result

Finally, we have to print the result on the console. We notice that the number has to be rounded up
to the second digit after the decimal point. In order to do that, we can use a placeholder – an item
that will be replaced by a particular value when printing. In C#, a digit surrounded by curly brackets is
used for a placeholder. As in programming counting starts from 0, the expression {0} means that it
will be replaced by the first given argument. We can format an integer or a floating-point number by
using F or f, which is followed by a whole positive number, specifying the number of digits after the
decimal point:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/505#4.

https://judge.softuni.org/Contests/Practice/Index/505#4

https://softuni.org

Chapter 3.1. Simple Conditions
In this chapter, we will discuss the conditional statements in the C# language, through which our
program may have different effects, depending on a condition. We'll explain the syntax of conditional
operators for checks (if and if-else) with appropriate examples and we will see in what range a
variable (its scope) lives. Finally, we will go through debugging techniques to track the path that runs
through our program during implementation.

Video: Chapter Overview
Watch the video lesson about what we will learn in this chapter: https://youtu.be/sstA00rIWk0.

Introduction to Simple Conditions by Examples
In programming we can check conditions and execute different blocks of code depending on the
check. This is typically performed using the if-else constructs:

var size = decimal.Parse(Console.ReadLine());
if (size < 0)
 Console.WriteLine($"Negative size: {size}");
else if (size > 1000)
 Console.WriteLine($"Size too big: {size}");
else
{
 Console.WriteLine($"Size accepted: {size}");
 Console.WriteLine($"Area: {size * size}");
}

Run the above code example: https://repl.it/@nakov/size-checker-if-else-csharp.

When executed, the above code will enter a decimal number and will check its value several times.
Depending on the above conditions, it will display different messages. Examples are shown below.

If we enter -20 as input, the output will be as follows:

Negative size: -20

If we enter 150 as input, the output will be as follows:

Size accepted: 150
Area: 22500

If we enter 3200 as input, the output will be as follows:

Size too big: 3200

Let's explain in greater detail how to use simple if-else conditions in C#.

Comparing Numbers
In programming, we can compare values using the following operators:

• Operator < (less than)

• Operator > (greater than)

https://youtu.be/sstA00rIWk0
https://repl.it/@nakov/size-checker-if-else-csharp

108 Programming Basics with C#

• Operator <= (less than or equals)

• Operator >= (greater than or equals)

• Operator == (equals)

• Operator != (different than)

When compared, the result is a Boolean value true or false, depending on whether the result of the
comparison is true or false.

Video: Comparing Numbers

Watch the video lesson about comparing numbers: https://youtu.be/KTdqDWg7Wf8.

Examples for Comparing Numbers

Note that when printing the true and false values in C# language, they are printed with a capital letter,
respectively True and False.

Comparison Operators

In C#, we can use the following comparison operators:

Operator Notation Applicable for

Greater than >

numbers, dates, other comparable objects
Greater than or equals >=

Less than <

Less than or equals <=

Equals ==
numbers, strings, dates

Not equal !=

The following example demonstrates how to use comparison operators in expressions:

Simple If Conditions
In programming we often check particular conditions and perform various actions depending on the
result of the check. This is done by if condition, which has the following structure:

https://youtu.be/KTdqDWg7Wf8

Chapter 3.1. Simple Conditions 109

if (condition)
{
 // condition body;
}

Video: Simple If / If-Else Conditions

Watch the video lesson about the simple if-conditions: https://youtu.be/MG4nOaVDVA.

Example: Excellent Grade

We read the grade from the console and check if it's excellent (≥ 5.50).

Test the code from the example locally. Try entering different grades, for example 4.75, 5.49, 5.50
and 6.00. For grades less than 5.50, the program will not give any output, however if the grade is
5.50 or greater, the output would be "Excellent!".

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#0.

If-Else Conditions

The if construction may also contain an else clause to give a specific action in case the Boolean
expression (which is set at the beginning if (bool expression)) returns a negative result (false).
Built this way, the conditional statement is called if-else and its behavior is as follows: if the result
of the condition is positive (true) – we perform some actions, when it is negative (false) – others.
The format of the construction is:

if (condition)
{
 // condition body;
}
else
{
 // else construction body;
}

Example: Excellent Grade or Not

Like the example above, we read the grade from the console and check if it's excellent, but this time
we should output the result in both cases.

https://youtu.be/MG4nOaVDVA
https://judge.softuni.org/Contests/Practice/Index/506#0

110 Programming Basics with C#

Testing in Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#1.

About the Curly Braces {} After If / Else

When we have only one command in the body of the if construction, we can skip the curly brackets,
indicating the conditional operator body. When we want to execute block of code (group of
commands), curly brackets are required. In case we drop them, only the first line after the if clause
will be executed.

It's a good practice to always put curly braces, because it makes our code more
readable and cleaner.

Here is an example where dropping curly braces leads to confusion:

Executing the above code will output the following console result:

With curly braces:

The following output will be printed on the console:

https://judge.softuni.org/Contests/Practice/Index/506#1

Chapter 3.1. Simple Conditions 111

If-Else Conditions – Examples
Now let's take a few examples (exercises) to learn how to use if-else conditional statements in
practice.

Video: Examples of If-Else

Watch the video lesson about the "Even or Odd Number" and "The Larger Number" problems and
their solutions: https://youtu.be/qIUoKiObr-A.

Example: Even or Odd Number

Write a program that checks whether an integer is even or odd.

Hint and Guidelines

We can solve the problem with one if-else statement and the operator %, which returns a remainder
by dividing two numbers.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#2.

Example: The Larger Number

Write a program that reads from the console two integers and prints the larger of them. Print "Greater
number: " + the bigger number.

The input comes as two numbers, each on a separate line. Sample input:

3
5

The output is a message like the shown below. Sample output:

Greater number: 5

https://youtu.be/qIUoKiObr-A
https://judge.softuni.org/Contests/Practice/Index/506#2

112 Programming Basics with C#

Hint and Guidelines

Our first task is to read the two numbers from the console. Then, with a simple if-else statement,
combined with the operator for greater than (>), we do check. Part of the code is deliberately blurred,
so you can test what you learned so far.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#3.

Variable Scope
Each variable has a range in which it exists, called variable scope. This range specifies where a variable
can be used and how long is its lifetime. In the C# language, the scope in which a variable exists, starts
from the line in which we defined it and ends with the first closing curly bracket } (of the method, the
if statement, etc.).

Thus, it is important to know that any variable defined inside the body of certain if statement will
not be available outside of it, unless we have defined it higher in the code.

Video: Variable Scope

Watch the video lesson about the variable scope: https://youtu.be/J54TJBnY5vQ.

Variable Scope – Example

In the example below, on the last line we are trying to print the variable salary that is defined in the if
statement, we will get an error because we don't have access to it.

The above code will not compile, because we are trying to access a variable out of its scope. The
scope of the salary variable is limited inside the block after the if, starting from { and ending by }.

https://judge.softuni.org/Contests/Practice/Index/506#3
https://youtu.be/J54TJBnY5vQ

Chapter 3.1. Simple Conditions 113

Sequence of If-Else Conditions
Sometimes we need to do a sequence of conditions before we decide what actions our program will
execute. In such cases, we can apply the construction if-else if … -else in series. For this
purpose, we use the following “chained if-else” format:

if (condition)
{
 // condition body;
}
else if (second condition)
{
 // condition body;
}
else if (third condition)
{
 // condition body;
}
…
else
{
 // else construction body;
}

Video: Series of If-Else Checks

Watch the video lesson about the if-else checks: https://youtu.be/PUvf7gtKSz4.

Example: Digits in English

Print the digits in the range of 1 to 9 (digits are read from the console) in English. We can read the
digit and then, through a sequence of conditions we print the relevant English word:

int num = int.Parse(Console.ReadLine());
if (num == 1)
{
 Console.WriteLine("one");
}
else if (num == 2)
{
 Console.WriteLine("two");
}
else if (…)
{
 …
}
else if (num == 9)
{
 Console.WriteLine("nine");
}
else
{
 Console.WriteLine("number too big");
}

https://youtu.be/PUvf7gtKSz4

114 Programming Basics with C#

The program logic from the above example sequentially compares the input number from the console
with the digits from 1 to 9, when each following comparison is being performed only in case the
previous comparison is not true. Eventually, if none of the if statements are true, the last else clause
is performed.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#4.

Debugging: Simple Operations with Debugger
So far, we wrote a lot of code, and there were some mistakes in it, right? Now we will show a tool
that can help us find mistakes more easily: the debugger.

Video: Debugging Code in Visual Studio

Watch the video lesson about debugging code in Visual Studio: https://youtu.be/2asLYeJ6TeI.

What is "Debugging"?

Debugging is the process of "attaching" to the program execution, which allows us to track step by
step the process. We can track line by line what happens in our program, what path it follows, what
are the values of defined variables at each step of debugging, and many other things that allow us to
detect errors (bugs).

Debugging in Visual Studio

By pressing the [F10] button, we run the program in debug mode. We move to the next line again
with [F10].

https://judge.softuni.org/Contests/Practice/Index/506#4
https://youtu.be/2asLYeJ6TeI

Chapter 3.1. Simple Conditions 115

With [F9] we create the so-called breakpoints, that we can reach directly using [F5] when we start
the program.

Exercises: Simple Conditions
Now let's practice the lessons learned in this chapter about of conditional statements if and if-
else. We will solve a few practical exercises.

Video: Chapter Summary

Watch the following video to summarize what we learned in this chapter about the conditional
statements in C#: https://youtu.be/mdv28HD5qes.

What We Learned in This Chapter?

Let's summarize what we learned in this chapter:

• Numbers can be compared by the ==, <, >, <=, >= and != operators:

Console.WriteLine(5 <= 10); // True

• Simple if-conditions check a condition and execute a code block if it is true:

if (a > 5)
{
 Console.WriteLine("The number `a` is bigger than 5");
}

• The if-else construction executes one of two blocks depending on whether a condition is true
or false:

if (a > 5)
{
 Console.WriteLine("The number `a` is bigger than 5");
}

https://youtu.be/mdv28HD5qes

116 Programming Basics with C#

else
{
 Console.WriteLine("The number `a` is smaller or equal than 5");
}

• If-else constructions can be chained as if-else-if-else sequences:

if (a > 100)
{
 Console.WriteLine("The number `a` is bigger than 100");
}
else if (a > 20)
{
 Console.WriteLine("The number `a` is bigger than 20");
}
else
{
 Console.WriteLine("The number `a` is smaller or equal than 20");
}

Empty Visual Studio Solution (Blank Solution)

At the start we create a Blank Solution in Visual Studio to organize better the task solutions from the
exercise – each task will be in a separate project and all projects will be in a common solution.

We run Visual Studio and create a new Blank Solution: [File] -> [New] -> [Project].

Choose from the dialog box [Templates] -> [Other Project Types] -> [Visual Studio Solutions] -> [Blank
Solution] and give an appropriate project name, for example: “Simple-Conditions”:

Chapter 3.1. Simple Conditions 117

Now we have an empty Visual Studio Solution (no projects in it):

We will use this solution to create a separate project for each of the problems, which we will solve as
exercises in this chapter.

Problem: Excellent Grade

The first exercise for this topic is to write a console program that inputs the grade (decimal number)
and prints Excellent! if the grade is 5.50 or higher.

Sample Input and Output

Input Output Input Output Input Output

6 Excellent! 5.5 Excellent! 5.49 (no output)

118 Programming Basics with C#

Creating a New C# Project

We create a new project in the existing Visual Studio solution. In Solution Explorer, right-click on
Solution 'Simple-Conditions'. Then choose [Add] -> [New Project]:

A dialog box will open for selecting a project. Choose C# console application and specify a name, for
example "Excellent-Result":

Now we have a solution with one console application in it. What remains is to write the code to solve
the problem.

Chapter 3.1. Simple Conditions 119

Writing the Program Code

For this purpose, we go into the body of the Main (string[] args) method and write the following
code:

Run the program with [Ctrl+F5], to test it with different input values:

Testing in the Judge System

Test your solution from the example: https://judge.softuni.org/Contests/Practice/Index/506#0.

https://judge.softuni.org/Contests/Practice/Index/506#0

120 Programming Basics with C#

Problem: Excellent Grade or Not

The next exercise from this topic is to write a console program that inputs the grade (decimal number)
and prints Excellent! if the grade is 5.50 or higher, otherwise "Not excellent.".

Sample Input and Output

Input Output Input Output Input Output

6 Excellent! 5 Not Excellent! 5.49 Not excellent.

Creating a New C# Project and Writing the Code

First, we create a new C# console project in the Simple-Conditions solution.

• We click on the solution in Solution Explorer and choose [Add] -> [New Project].

• We choose [Visual C#] -> [Windows] -> [Console Application] and specify a name, for example:
“Excellent-or-Not”.

Now we have to write the code of the program. You can get help by using the sample code from the
picture:

Automatic Switching to the Current Project

If try to run the program using [Ctrl+F5], the result might be incorrect, because it might be the result
from the previous project, not the current one, shown at the screen.

We turn on the mode for automatic switching to the current project by right-clicking on the main
Solution and choosing [Set StartUp Projects...]:

Chapter 3.1. Simple Conditions 121

A dialog box will appear, and you have to choose [Startup Project] -> [Current selection]:

Local Execution and Testing

Now we run the program as usual with [Ctrl + F5] and test if it works correctly:

122 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#1.

Problem: Even or Odd

Write a program that checks whether an integer is even or odd.

Sample Input and Output

Input Output Input Output Input Output Input Output

2 even 3 odd 25 odd 1024 even

Hints and Guidelines

Again, first we add a new C# console project in the existing solution. In the static void Main()
method, we have to write the program code. Checking if a given number is even can be done with
the operator %, which will return the remainder from an integer divided by 2 as follows:

var isEven = (num % 2 == 0).

Now we run the program with [Ctrl + F5] and test it:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#2.

Problem: Finding the Greater Number

Write a program that inputs two integers and prints the larger one.

https://judge.softuni.org/Contests/Practice/Index/506#1
https://judge.softuni.org/Contests/Practice/Index/506#2

Chapter 3.1. Simple Conditions 123

Sample Input and Output

Input Output Input Output Input Output Input Output

5
3

5
 3

5
5

 10
10

10
 -5

5
5

Hints and Guidelines

As usual, first we need to add a new C# console project to the existing solution. For the code of the
program we need a single if-else statement. You can partially get assistance for the code from the
picture that is deliberately blurred to make you think about how to write it yourself:

When we are done with the implementation, so we run the program with [Ctrl + F5] to test it:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#3.

Problem: Typing a Digit in Words

Write a program that inputs an integer in the range [0 ... 9] and outputs it in words in English. If the
number is out of range, print "number too big".

Sample Input and Output

Input Output Input Output Input Output Input Output

5 five 1 one 9 nine 10 number too big

Hints and Guidelines

We can use a series of if-else statements to examine the possible 11 cases.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#4.

https://judge.softuni.org/Contests/Practice/Index/506#3
https://judge.softuni.org/Contests/Practice/Index/506#4

124 Programming Basics with C#

Problem: Bonus Score

We have an integer – the number of points. Bonus score are charged on it, according to the rules
described below. Write a program that calculates bonus score for this figure and total points with
bonuses.

• If the number is up to 100 including, bonus score is 5.

• If the number is larger than 100, bonus score is 20% of the number.

• If the number is larger than 1000, bonus score is 10% of the number.

• Additional bonus score (accrued separately from the previous ones):

o for even number → + 1 p.

o for number, that ends with 5 → + 2 p.

Sample Input and Output

Input Output Input Output Input Output Input Output

20
 6
 26

 175

 37
 212

 2703

 270.3
 2973.3

 15875

 1589.5

 17464.5

Video: Bonus Score

Watch the video lesson about the "Bonus Score" problem: https://youtu.be/hstZ5rNJ7vs.

Hints and Guidelines

We can calculate the main and additional bonus score with a series of if-else-if-else statements.

For the main bonus score we have 3 cases (when the entered number is up to 100, between 100 and
1000 and larger than 1000), and for extra bonus score – 2 more cases (when the number is even and
odd).

https://youtu.be/hstZ5rNJ7vs

Chapter 3.1. Simple Conditions 125

Here's an example of the program execution:

Note that for this exercise, the judge is set to ignore anything that is not a number, so we can print
not only the numbers, but also specifying text.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#5.

Problem: Guess the Password

Write a program that inputs a password (one line with random text) and checks if the input matches
the phrase "s3cr3t!P@ssw0rd". If it matches, print "Welcome", otherwise "Wrong password!".

Sample Input and Output

Input Output Input Output Input Output

qwerty
Wrong

password!

s3cr3t!P@ssw0rd Welcome

s3cr3t!p@ss Wrong password!

Hints and Guidelines

Use an if-else statement.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#8.

Problem: Summing Up Seconds

Three athletes finish in a particular number of seconds (between 1 and 50). Write a program that
introduces the times of the contestants and calculates their total time in "minutes:seconds" format.
Seconds need to be zeroed at the front (2 -> "02", 7 -> "07", 35 -> "35").

Sample Input and Output

Input Output Input Output Input Output Input Output

35
45
44

2:04
 22

 7
 34

 1:03
 50

 50
 49

 2:29
 14

 12
 10

 0:36

Video: Summing Up Seconds

Watch the video about the "Summing Up Seconds" problem and its step-by-step solution:
https://youtu.be/bnNxe79X-wo.

Hints and Guidelines

https://judge.softuni.org/Contests/Practice/Index/506#5
https://judge.softuni.org/Contests/Practice/Index/506#8
https://youtu.be/bnNxe79X-wo

126 Programming Basics with C#

First, we sum up the three numbers to get the total result in seconds. Since 1 minute = 60 seconds,
we will have to calculate the number of minutes and seconds in the range 0 to 59:

• If the result is between 0 and 59, we print 0 minutes + calculated seconds.

• If the result is between 60 and 119, we print 1 minute + calculated seconds minus 60.

• If the result is between 120 and 179, we print 2 minutes + calculated seconds minus 120.

• If the seconds are less than 10, we print the number with zero in front.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#6.

Problem: Metric Converter

Write a program that convert a distance between the following 8 units of measure: m, mm, cm, mi, in,
km, ft, yd. Use the below table:

Input measure Output measure Input measure Output measure

1 meter (m) 1000 millimeters (mm) 1 meter (m) 0.001 kilometers (km)

1 meter (m) 100 centimeters (cm) 1 meter (m) 3.2808399 feet (ft)

1 meter (m) 0.000621371192 miles (mi) 1 meter (m) 1.0936133 yards (yd)

1 meter (m) 39.3700787 inches (in)

https://judge.softuni.org/Contests/Practice/Index/506#6

Chapter 3.1. Simple Conditions 127

You have three input lines:

• First line: the number for converting.

• Second line: the input unit.

• Third line: the output unit (for result).

Sample Input and Output

Input Output Input Output Input Output

12
km
ft

39370.0788
 150

 mi
 in

 9503999.99393599
 450

 yd
 km

 0.41147999937455

Video: Metric Converter

Watch the following video lesson to learn how to solve the "Metric Converter" problem in C#:
https://youtu.be/Bd6NgaHhrko.

Hints and Guidelines

We read the input data, and we can add ToLower() function when we read the measuring units. The
function will make all letters small. As we can see from the table in the condition, we can only do
converting between meters and some other measuring unit. Then, first we have to calculate the
number for converting in meters. That's why, we need to make a set of checks to define the input
unit and then the output unit.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#7.

Problem: Numbers from 100 to 200

Write a program that inputs an integer and checks if it is below 100, between 100 and 200 or over
200. Print the appropriate message as in the examples below.

https://youtu.be/Bd6NgaHhrko
https://judge.softuni.org/Contests/Practice/Index/506#7

128 Programming Basics with C#

Sample Input and Output

Input Output Input Output Input Output

95 Less than 100 120 Between 100 and 200 210 Greater than 200

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#9.

Problem: Identical Words

Write a program that inputs two words and checks if they are the same. Do not make difference
between uppercase and lowercase letters. You have to print "yes" or "no".

Sample Input and Output

Input Output Input Output Input Output Input Output

Hello
Hello

yes
 SoftUni

softuni
yes

 Soft
Uni

no
 banana

lemon
no

Hints and Guidelines

Before comparing the words, turn them into a lowercase to avoid the letter size influence (uppercase
/ lowercase): word = word.ToLower().

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#10.

Problem: Speed Assessment

Write a program that inputs the speed (decimal number) and prints speed information. For speed up
to 10 (inclusive), print "slow". For speed over 10 and up to 50, print "average". For speed over 50 and
up to 150, print "fast". For speed over 150 and up to 1000, print "ultra fast". For higher speed, print
"extremely fast".

Sample Input and Output

Input Output Input Output Input Output

8 slow 126 fast 3500 extremely fast

49.5 average 160 ultra fast 50000 extremely fast

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#11.

Problem: Areas of Figures

Write a program that inputs the sizes of a geometric figure and calculates its area. The figures are
four types: square, rectangle, circle and triangle.

https://judge.softuni.org/Contests/Practice/Index/506#9
https://judge.softuni.org/Contests/Practice/Index/506#10
https://judge.softuni.org/Contests/Practice/Index/506#11

Chapter 3.1. Simple Conditions 129

The first line of the input provides the type of the figure (square, rectangle, circle, triangle).

• If the figure is a square, the next line provides one number – the length of its side.

• If the figure is a rectangle, the next two lines we provide two numbers – the lengths of its sides.

• If the figure is a circle, the next line provides one number – the radius of the circle.

• If the figure is a triangle, the next two lines provide two numbers – the length of the side and
the length of its height.

Round the result up to the third digit after the decimal point.

Sample Input and Output

Input Output Input Output Input Output Input Output

square
5

25
 rectangle

7
2.5

17.5

circle
6

113.097
 triangle

4.5
20

45

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#12.

Problem: Time + 15 Minutes

Write a program that inputs hours and minutes of a 24-hour day and calculates what will be the time
after 15 minutes. Print the result in hh:mm format. Hours are always between 0 and 23, and minutes
are always between 0 and 59. Hours are written with one or two digits. Minutes are always written
with two digits and zero at the front when needed.

Sample Input and Output

Input Output Input Output Input Output Input Output

 1
 46

2:01
 0

 01
0:16

 23
 59

0:14
 11

 08
11:23

Hints and Guidelines

Add 15 minutes and check using a few conditions. If minutes are over 59, increase hours with 1 and
reduce minutes with 60. Identically, check the case when hours are over 23. When you print the
minutes, you should check for zero at the front.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#13.

Problem: Equal 3 Numbers

Write a program that inputs 3 numbers and prints whether they are the same (yes / no).

Sample Input and Output

Input Output Input Output Input Output

5
5
5

yes
 5

4
5

no
 1

2
3

no

https://judge.softuni.org/Contests/Practice/Index/506#12
https://judge.softuni.org/Contests/Practice/Index/506#13

130 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#14.

Problem: * Numbers from 0 to 100 as English Words

Write a program that converts a number in the range of [0 ... 100] into text (in English).

Sample Input and Output

Input Output Input Output Input Output

25 twenty five 42 forty two 6 six

Hints and Guidelines

First check for one-digit numbers and if the number is one-digit, print the appropriate word for it.
Then check for two-digit numbers. Print them in two parts: left part (tens = number / 10) and right
part (units = number % 10). If the number has 3 digits, it must be 100 and can be considered a special
case.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/506#15.

Lab: GUI (Desktop) Application – Currency Converter

After we've done some exercises on conditional statements (checks), now let's do something
more interesting: an application with a graphical user interface (GUI) for converting currencies. We
will use the knowledge from this chapter to choose from several available currencies and make
calculations at different rate to the selected currency. Now let's see how to create a graphical (GUI)
app for currency conversion. The app will look like the picture below:

It converts Bulgarian levs (BGN) to Euro (EUR), US Dollars (USD) or Great Britain Pounds (GBP).

Video: Building a GUI App "Currency Converter"

Watch the video lesson about building a Windows Forms based GUI app "Currency Converter":
https://youtu.be/IIkPmoXmjdg.

Creating a New C# Project and Adding Controls

This time we create a new Windows Forms Application with name “Currency-Converter”:

https://judge.softuni.org/Contests/Practice/Index/506#14
https://judge.softuni.org/Contests/Practice/Index/506#15
https://youtu.be/IIkPmoXmjdg

Chapter 3.1. Simple Conditions 131

We order the following controls in the form:

• One box for entering a number (NumericUpDown)

• One drop-down list with currencies (ComboBox)

• Text block for the result (Label)

• Several inscriptions (Label)

We set the sizes and their properties to look like the picture below:

Configuring the UI Controls

We apply the following settings for the UI controls:

• For the main form (Form) that contains
all the controls:

o (name) = FormConverter

o Text = "Currency Converter"

o Font.Size = 12

o MaximizeBox = False

o MinimizeBox = False

132 Programming Basics with C#

o FormBorderStyle =
FixedSingle

• For the field for entering a number
(NumericUpDown):

o (name) = numericUpDownAmount

o Value = 1

o Minimum = 0

o Maximum = 1000000

o TextAlign = Right

o DecimalPlaces = 2

• For the drop-down list of currencies
(ComboBox):

o (name) = comboBoxCurrency

o DropDownStyle = DropDownList

o Items =

▪ EUR

▪ USD

▪ GBP

• For the result text block (Label):

o (name) = labelResult

o AutoSize = False

o BackColor = PaleGreen

o TextAlign = MiddleCenter

o Font.Size = 14

o Font.Bold = True

Events and Event Handlers

We need to take the following events to write the C# code that will be executed upon their
occurrence:

• The event ValueChanged of numeric entry control numericUpDownAmount:

• The event Load of the form FormConverter

• The event SelectedIndexChanged of the drop-down list for choosing the currency
comboBoxCurrency

We will use the following C# code for event handling:

private void FormConverter_Load(object sender, EventArgs e)
{
 this.comboBoxCurrency.SelectedItem = "EUR";
}

private void numericUpDownAmount_ValueChanged(object sender, EventArgs e)

Chapter 3.1. Simple Conditions 133

{
 ConvertCurrency();
}

private void comboBoxCurrency_SelectedIndexChanged(object оbj, EventArgs e)
{
 ConvertCurrency();
}

Our task is to select the currency "EUR" when we start the program and change the values in the sum
or currency field then calculating the result by calling the ConvertCurrency() method.

Writing the Program Code

We have to write the event ConvertCurrency() to convert the BGN amount into the selected

currency:

private void ConvertCurrency()
{
 var originalAmount = this.numericUpDownAmount.Value;
 var convertedAmount = originalAmount;

 if (this.comboBoxCurrency.SelectedItem.ToString() == "EUR")
 {
 convertedAmount = originalAmount / 1.95583m;
 }
 else if (this.comboBoxCurrency.SelectedItem.ToString() == "USD")
 {
 convertedAmount = originalAmount / 1.80810m;
 }
 else if (this.comboBoxCurrency.SelectedItem.ToString() == "GBP")
 {
 convertedAmount = originalAmount / 2.54990m;
 }
 this.labelResult.Text = originalAmount + " BGN = " +
 Math.Round(convertedAmount, 2) + " " +
 this.comboBoxCurrency.SelectedItem;
}

The above code takes the amount for converting the field numericUpDownAmount and the selected
currency for the result from the field comboBoxCurrency. Then with a conditional statement,
according to the selected currency, the amount is divided by the exchange rate (which is fixed in the
source code). Finally, a text message with the result (rounded to the second digit after the decimal
point) is generated and recorded in the green box labelResult. Try it!

If you have problems with the example above, you can ask for help in the SoftUni official discussion
forum (http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

http://forum.softuni.org/
https://fb.com/softuni.org

https://softuni.org

Chapter 3.2. Simple Conditions – Exam Problems
In the previous chapter, we went through the simple conditional statements in C#, which we can use
to execute different actions depending on a given condition. Now we shall solve a few practical
exercises from SoftUni exams to gain some experience.

Simple Conditions – Quick Review
We mentioned what the scope of a variable is, and how to track the execution of our program step
by step (the so-called debugging) as well. In this chapter, we will practice working with simple
conditions by going through some exam tasks. To do this, let's first revise the if-else construction:

if (bool expression)
{
 // condition body;
}
else
{
 // else-construction body;
}

if conditions in C# consist of:

• if clause

• bool expression – a variable of bool type (bool) or bool logical expression (an expression that
results in true/false)

• condition body – contains random block of source code

• else clause and its block of source code (optional)

After having revised how to write simple conditions, let' s solve a few exam problems in order to
practice the if-else construction.

Problem: Transportation Price
A student has to travel n kilometers. He can choose between three types of transportation:

• Taxi. Starting fee: 0.70 EUR. Day rate: 0.79 EUR/km. Night rate: 0.90 EUR/km.

• Bus. Day / Night rate: 0.09 EUR/km. Can be used for distances of minimum 20 km.

• Train. Day / Night rate: 0.06 EUR/km. Can be used for distances of minimum 100 km.

Write a program that reads the number of kilometers n and period of the day (day or night) and
calculates the price for the cheapest transport.

Input Data

Two lines are read from the console:

• The first line holds a number n – number of kilometers – an integer in the range of [1 … 5000].

• The second line holds the word “day” or “night” – traveling during the day or during the night.

Output Data

Print on the console the lowest price for the given number of kilometers.

136 Programming Basics with C#

Sample Input and Output

Input Output Input Output Input Output Input Output

5
day

4.65
 7

night
7

 25
day

2.25
 180

night
10.8

Hints and Guidelines

We will read the input data and depending on the distance, we will choose the cheapest transport.
To do that, we will write a few conditional statements.

Processing the Input Data

In the task, we are given information about the input and output data. Therefore, in the first two lines
from the solution, we will declare and initialize the two variables that are going to store the values of
the input data. The first line contains an integer and that is why the declared variable will be of int
type. The second line contains a word, therefore, the variable will be of string type.

Before starting with the conditional statements, we need to declare a variable that stores the value
of the transport price.

Calculating Taxi Rate

After having declared and initialized the input data and the variable that stores the value of the price,
we have to decide which conditions of the task have to be checked first.

The task specifies that the rates of two of the vehicles do not depend on whether it is day or night,
but the rate of one of the transports (taxi) depends. This is why the first condition will be whether it
is day or night, so that it is clear which rate the taxi will be using. To do that, we declare one more
variable that stores the value of the taxi rate.

In order to calculate the taxi rate, we will use conditional statement of type if-else and through it,

the variable for the price of the taxi will store its value.

Calculating Transportation Price

After having done that, now we can start calculating the transport price itself. The constraints in the
task refer to the distance that the student wants to travel. This is why, we will use an if-else
statement that will help us find the price of the transport, depending on the given kilometers.

Chapter 3.2. Simple Conditions – Exam Problems 137

First, we check whether the kilometers are less than 20, as the task specifies that the student can only
use a taxi for less than 20 kilometers. If the condition is true (returns true), the variable that is
created to store the value of the transport (price), will store the corresponding value. This value
equals the starting fee that we will sum with its rate, multiplied by the distance that the student has
to travel.

If the condition of the variable is not true (returns false), the next step of our program is to check
whether the kilometers are less than 100. We do that because the task specifies that in this range, a
bus can be used as well. The price per kilometer of a bus is cheaper than a taxi one. Therefore, if the
result of the condition is true, we store a value, equal to the result of the multiplication of the rate of
the bus by the distance to the variable for the transportation price in the else if statement body.

If this condition does not return true as a result, we have to store a value, equal to the result of the
multiplication of the distance by the train rate to the price variable in the else body. This is done
because the train is the cheapest transport for the given distance.

Printing the Output Data

After we have checked the distance conditions and we have calculated the price of the cheapest
transport, we have to print it. The task does not specify how to format the result, therefore, we just
print the variable:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/507#0.

Problem: Pipes in Pool
A pool with volume V fills up via two pipes. Each pipe has a certain flow rate (the liters of water,
flowing through a pipe for an hour). A worker starts the pipes simultaneously and goes out for N
hours. Write a program that finds the state of the pool the moment the worker comes back.

Input Data

Four lines are read from the console:

• The first line contains a number V – the volume of the pool in liters – an integer in the range of
[1 … 10000].

• The second line contains a number P1 – the flow rate of the first pipe per hour – an integer in
the range of [1 … 5000].

• The third line contains a number P2 – the flow rate of the second pipe per hour – an integer in
the range of [1 … 5000].

• The fourth line contains a number H – the hours that the worker is absent – a floating-point
number in the range of [1.0 … 24.00].

Output Data

Print on the console one of the two possible states:

• To what extent the pool has filled up and how many percent each pipe has contributed with.
All percent values must be formatted to an integer (without rounding).

https://judge.softuni.org/Contests/Practice/Index/507#0

138 Programming Basics with C#

o "The pool is [x]% full. Pipe 1: [y]%. Pipe 2: [z]%."

• If the pool has overflown – with how many liters it has overflown for the given time – a floating-
point number.

o "For [x] hours the pool overflows with [y] liters."

Have in mind that due to the rounding to an integer, there is data loss and it is normal the sum of the
percents to be 99%, not 100%.

Sample Input and Output

Input Output Input Output

1000
100
120
3

The pool is 66% full. Pipe 1:
45%. Pipe2: 54%.

 100
100
100
2.5

For 2.5 hours the pool overflows with
400 liters.

Hints and Guidelines

In order to solve the task, we read the input data, write a few conditional statements, do some
calculations and print the result.

Processing the Input Data

From the task requirements we note that our program must have four lines from which we read the
input data. The first three consist of integers and that is why the variables that will store their values
will be of int type. We know that the fourth line will be a floating-point number, therefore, the
variable we use will be of double type.

Out next step is to declare and initialize a variable in which we are going to calculate with how many
liters the pool has filled up for the time the worker was absent. We do the calculations by summing
the values of the flow rates of the two pipes and multiplying them by the hours that are given as input
data.

Checking the Conditions and Processing Output Data

After we have the value of the quantity of water that has flown through the pipes, the next step is to
compare that quantity with the volume of the pool itself.

We do that with a simple if-else statement, where the condition will be whether the quantity of
water is less than the volume of the pool. If the statement returns true, we have to print one line
that contains the ratio between the quantity of water that has flown through the pipes and the volume
of the pool, as well as the ratio of the quantity of the water from each pipe to the volume of the pool.

The ratio has to be in percentage, that is why all the calculations so far will be multiplied by 100. The
values will be printed using placeholders, and as there is a condition the result in percentage to be

Chapter 3.2. Simple Conditions – Exam Problems 139

formatted to two digits after the decimal point without rounding, we will use the method
Math.Truncate(…).

However, if the condition returns false, that means that the quantity of water is more than the
volume of the pool, therefore, it has overflown. Again, the output data has to be on one line, but this
time it should contain only two values – the one of the hours when the worker was absent, and the
quantity of water, which is the difference between the incoming water and the volume of the pool.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/507#1.

Problem: Sleepy Tom Cat
Tom Cat likes to sleep all day but, unfortunately, his owner is always playing with him whenever he
has free time. In order to sleep well, the norm of games that Tom has is 30 000 minutes per year. The
time for games he has depends on the holidays that his owner has:

• During workdays, his owner plays with him 63 minutes per day.

• During holidays, his owner plays with him 127 minutes per day.

Write a program that reads the number of holidays and prints whether Tom can sleep well and how
much the difference from the norm for the current year is. It is assumed that there are 365 days in
one year.

Example: 20 holidays -> the working days are 345 (365 - 20 = 345). The time for games is 24 275
minutes (345 * 63 + 20 * 127). The difference from the norm is 5 725 minutes (30 000 – 24 275 = 5
725) or 95 hours and 25 minutes.

Input Data

The input is read from the console and consists of an integer – the number of holidays in the range
of [0 … 365].

Output Data

Two lines have to be printed on the console:

• If Tom's time for games is above the norm for the current year:

o On the first line print: “Tom will run away”

o On the second line print the difference from the norm in the format:
“{H} hours and {M} minutes more for play”

https://judge.softuni.org/Contests/Practice/Index/507#1

140 Programming Basics with C#

• If the time for games of Tom is below the norm for the current year:

o On the first line print: “Tom sleeps well”

o On the second line print the difference from the norm in the format:
“{H} hours and {M} minutes less for play”

Sample Input and Output

Input Output Input Output

20
Tom sleeps well
95 hours and 25 minutes less for play

113

Tom will run away
3 hours and 47 minutes for play

Hints and Guidelines

In order to solve the problem, we will read the input data. Then, we will write a few conditional
statements and do some calculations. Finally, we will print the result.

Reading the Input Data

From the task we see that the input data will be read only on the first line and will be an integer in
the range of [0 … 365]. This is why we will use a variable of int type.

Calculating Working Days

To solve the problem, first we have to calculate the total minutes the owner of Tom is playing with
him. We see that not only does the sleepy cat has to play with his owner during the holidays, but also
during the working days. The number that we read from the console refers to the holidays.

Out next step is to calculate, with the help of that number, how many the working days of the owner
are, as without them we cannot calculate the total minutes for play. As the total number of days per
year is 365 and the number of holidays is X, that means that the number of working days is 365 - X*.
We store the difference in a new variable that only stores this value.

Calculating Playing Time

Once we have the number of days for playing, we can calculate the time for games of Tom in minutes.
Its value is equal to the result of the multiplication of the working days by 63 minutes (the task
specifies that during working days, the time for play is 63 minutes per day), summed with the result
of the multiplication of the holidays by 127 minutes (the task specifies that during holidays, the time
for play is 127 minutes per day).

In the task condition we see that we have to print the difference between the two values in hours
and minutes as output data. That is why we subtract the total time for play from the norm of 30 000
minutes and store the result in a new variable. After that, we divide that variable by 60 to get the
hours, and then, to find out how many the minutes are, we use modular division with the operator %,

as again we divide the variable of the difference by 60.

Here we have to note that if the total time for play of Tom is less than 30,000, when subtracting the
norm from it, we will obtain a negative number. In order to neutralize the number in the division, we

Chapter 3.2. Simple Conditions – Exam Problems 141

use the method Math.Abs(…) when finding the difference. The code below gives and idea of how to
implement this:

Checking the Conditions

The time for games is already calculated, which leads us to the next step – comparing the time for
play of Tom with the norm on which the good sleep of the cat depends. For that we will use an if-
else conditional statement. In the if clause we will check whether the time for play is more than 30

000 (the norm).

Processing the Output Data

Whatever the result of the conditional statement is, we have to print how much the difference in
hours and minutes is. We will do that with a placeholder and the variables that store the values of the
hours and the minutes, as the formatting will be according to the task requirements for output.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/507#2.

Problem: Harvest
In a vineyard with area X square meters, 40% of the harvest goes for wine production. Y kilograms of
grapes are extracted from 1 m2 vineyard. 2,5 kg of grapes are needed for 1 liter of wine. The wanted
quantity of wine for sale is Z liters.

Write a program that calculates how much wine can be produced and whether that quantity is enough.
If it is enough, the rest is divided between the vineyard workers equally.

Input Data

The input data is read from the console and consists of exactly 4 lines:

• First line: X m2 is the vineyard – an integer in the range of [10 … 5000].

• Second line: Y grapes for one m2 – an integer in the range of [0.00 … 10.00].

• Third line: Z needed liters of wine – an integer in the range of [10 … 600].

https://judge.softuni.org/Contests/Practice/Index/507#2

142 Programming Basics with C#

• Fourth line: number of workers – an integer in the range of [1 … 20].

Output Data

The following has to be printed on the console:

• If the produced wine is less than the needed quantity:

o “It will be a tough winter! More {insufficient wine} liters wine needed.”
* The result has to be rounded down to the nearest integer.

• If the produced wine is more than the needed quantity:

o “Good harvest this year! Total wine: {total wine} liters.”
* The result has to be rounded down to the nearest integer.

o “{Wine left} liters left -> {wine for one worker} liters per person.”
* Both of the results have to be rounded up to the higher integer.

Sample Input and Output

Input Output Input Output

 650
 2
 175
 3

Good harvest this year! Total wine:
208 liters.
33 liters left -> 11 liters per person.

 1020
 1.5
 425
 4

It will be a tough winter! More
180 liters wine needed.

Hints and Guidelines

In order to solve the problem, we will read the input data. Then, we will write a few conditional
statements and do some calculations. Finally, we will print the result.

Processing the Input Data

First, we have to check what the input data will be, so that we can choose what variables we will use.

Performing the Calculations

To solve the problem, based on the input data, we have to calculate how many liters of wine will be
produced. From the task requirements, we see that in order to calculate the quantity of wine in liters,
we firstly have to find the quantity of grapes in kilograms, which will be get from the harvest. For that,
we will declare a variable that keeps a value, equal to 40% of the result from the multiplication of the
vineyard area by the quantity of grapes, which is extracted from 1 m2.

After having done these calculations, we are ready to calculate the quantity of wine in liters that will
be produced from the harvest as well. For that, we declare one more variable that stores that quantity,
which in order to calculate, we have to divide the quantity of grapes in kg by 2.5.

Chapter 3.2. Simple Conditions – Exam Problems 143

Checking the Conditions and Printing the Output

After having done the necessary calculations, the next step is to check whether the liters of wine that
have been produced, are enough. For that we will use a simple conditional statement of the if-else
type and we will check whether the liters of wine from the harvest are more than or equal to the
needed liters.

If the condition returns true, from the requirements we see that on the first line we have to print the
wine that has been produced from the harvest. That value has to be rounded down to the nearest
integer, which we will do by using the method Math.Floor(…) and a placeholder when printing it.

On the second line we have to print the results by rounding them up to the higher integer, which we
will do by using the method Math.Ceiling(…). The values that we have to print are the quantity of
wine left and the quantity that each worker gets. The wine left is equal to the difference between the
produced liters of wine and the needed liters of wine. We calculate the value of that quantity in a
new variable, which we declare and initialize in the if condition body, before printing the first line.
We calculate the quantity of wine that each worker gets by dividing the wine left by the number of
workers.

If the condition returns false, we have to print the difference between the needed liters and the

liters of wine produced from the harvest. There is a specification that the result has to be rounded
down to the nearest integer, which we will do by using the method Math.Floor(…).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/507#3.

Problem: Firm
A firm gets a request for creating a project for which a certain number of hours are needed. The firm
has a certain number of days. During 10% of the days, the workers are being trained and cannot work
on the project. A normal working day is 8 hours long. The project is important for the firm and every
worker must work on it with overtime of 2 hours per day.

The hours must be rounded down to the nearest integer (for example, 6.98 hours are rounded to 6
hours).

https://judge.softuni.org/Contests/Practice/Index/507#3

144 Programming Basics with C#

Write a program that calculates whether the firm can finish the project on time and how many hours
more are needed or left.

Input Data

The input data is read from the console and contains exactly three lines:

• On the first line are the needed hours – an integer in the range of [0 … 200 000].

• On the second line are the days that the firm has – an integer in the range of [0 … 20 000].

• On the third line are the number of all workers – an integer in the range of [0 … 200].

Output Data

Print one line on the console:

• If the time is enough:

o "Yes!{the hours left} hours left.".

• If the time is NOT enough:

o "Not enough time!{additional hours} hours needed.".

Sample Input and Output

Input Output Input Output

90
7
3

Yes!99 hours left.
 99

3
1

Not enough time!72 hours needed.

Hints and Guidelines

In order to solve the problem, we will read the input data. Then, we will write a few conditional
statements and do some calculations. Finally, we will print the result.

Reading the Input Data

Firstly, we need to decide what data types we are going to use for the input data.

Auxiliary Calculations

The next step is to calculate the number of total working hours by multiplying the working days by 8
(every working day is 8 hours long) with the number of workers and then sum them with the overtime.
The working days equal 90% of the days that the firm has. The overtime equals to the result of the
multiplication of the number of workers by 2 (the possible hours of overtime) and then it is multiplied
by the number of days that the firm has. From the task requirements we see that the hours should be
rounded down to the nearest integer, which we will do with the method Math.Floor(…).

Chapter 3.2. Simple Conditions – Exam Problems 145

Checking the Conditions and Printing Output Data

After having done the calculations that are needed to find the value of the working hours, now we
have to check whether these hours are enough, or some hours are left.

If the time is enough, we print the result that is specified in the task requirements, which in this case
is the difference between the working hours and the hours needed for finishing the project.

If the time is not enough, we print the additional hours that are needed for finishing the project. They
equal the difference between the hours for the project and the total working hours.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/507#4.

https://judge.softuni.org/Contests/Practice/Index/507#4

https://softuni.org

Chapter 4.1. More Complex Conditions
In the current chapter, we are going to examine the nested conditional statements in the C# language,
by which our program can contain conditions that contain other nested conditional statements. We
call them "nested", because we put an if condition into another if condition. We are going to
examine the more complex logical conditions through proper examples.

Video: Chapter Overview
Watch this video to see what you will learn in this chapter: https://youtu.be/qvbVrKXxsu0.

Introduction to Complex Conditions by Examples
Conditional statements can be nested, i.e. we can put if-else inside another if-else statement.

Conditions in the if constructions can be complex, e.g. use logical "AND" or logical "OR". Example:

var a = decimal.Parse(Console.ReadLine());
var b = decimal.Parse(Console.ReadLine());

if (a > 0 && b > 0 && a <= 100 && b <= 100)
{
 if (a * b >= 5000)
 Console.WriteLine($"Large size: {a*b}");
 else if (a * b > 1000 && a * b < 5000)
 Console.WriteLine($"Middle size: {a * b}");
 else
 Console.WriteLine($"Small size: {a * b}");
}
else
 Console.WriteLine($"Invalid size (a={a}, b={b})");

Run the above code example: https://repl.it/@nakov/nested-if-else-conditions-csharp.

The above code performs a series of checks using nested if-else conditional statements and logical

operators like && (logical AND) to check the input data for the following 4 cases:

• Size out of range (one of the sides is negative or bigger than 100).

• Large size (area >= 5000).

• Middle size (1000 < area < 5000)

• Small size (area <= 1000)

Let's explain in greater detail how to use complex and nested if-else conditions in C#.

Nested If-Else Conditions
Pretty often the program logic requires the use of if or if-else statements, which are contained

one inside another. They are called nested if or if-else statements. This allows branching the
program logic into several levels.

The Nested If-Else Construction

As implied by the definition "nested", these are if or if-else statements that are placed inside other

if or else statements.

https://youtu.be/qvbVrKXxsu0
https://repl.it/@nakov/nested-if-else-conditions-csharp

148 Programming Basics with C#

if (condition1)
{
 if (condition2)
 {
 // body;
 }
 else
 {
 // body;
 }
}

Video: Nested Conditional Statements

Watch a video lesson about the nested if-conditions: https://youtu.be/4ugMAlkQAMo.

Deep Nesting

Nesting of more than three conditional statements inside each other is not considered a good practice
and has to be avoided, mostly through optimization of the structure/the algorithm of the code and/or
by using another type of conditional statement, which we are going to examine below in this chapter.

Nested If-Else Conditions – Examples

Let's take a few examples in order to gain experience about how to use nested if-else conditions
in practice.

Example: Personal Titles

Depending on age (decimal number and gender (m / f), print a personal title:

• “Mr.” – a man (gender “m”) – 16 or more years old.

• “Master” – a boy (gender “m”) under 16 years.

• “Ms.” – a woman (gender “f”) – 16 or more years old.

• “Miss” – a girl (gender “f”) under 16 years.

Sample Input and Output

Input Output Input Output Input Output Input Output

12
f

Miss
 17

m
Mr.

 25
 f

Ms.
 13.5

 m
Master

Video: Personal Titles

Watch this video to learn how to solve this problem: https://youtu.be/7WiBbMOAc7Q.

Solution

We should notice that the output of the program depends on a few things. First, we have to check
what is the entered gender and then check the age. Respectively, we are going to use a few if-else
blocks. These blocks will be nested, meaning from the result of the first, we are going to define which
one of the others to execute.

https://youtu.be/4ugMAlkQAMo
https://youtu.be/7WiBbMOAc7Q

Chapter 4.1. More Complex Conditions 149

The diagram below illustrates the process in detail:

After reading the input data from the console, the following program logic should be executed:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#0.

Example: Small Shop

A Bulgarian entrepreneur opens small shops in a few cities with different prices for the following
products:

product / city Sofia Plovdiv Varna

coffee
water
beer
sweets
peanuts

0.50
0.80
1.20
1.45
1.60

0.40
0.70
1.15
1.30
1.50

0.45
0.70
1.10
1.35
1.55

https://judge.softuni.org/Contests/Practice/Index/508#0

150 Programming Basics with C#

Calculate the price by the given city (string), product (string) and quantity (decimal number).

Sample Input and Output

Input Output Input Output Input Output Input Output

coffee
Varna
2

0.9

 peanuts
Plovdiv
1

1.5
 beer

 Sofia
 6

7.2

 water
 Plovdiv
 3

2.1

Video: Small Shop

Watch this video to learn how to solve this problem: https://youtu.be/kU_ru7GK-Mg.

Solution

We convert all of the letters into lower register using the function .ToLower(), in order to compare
products and cities no matter what the letters are – small or capital ones.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#1.

More Complex Conditions
Let's take a look at how we can create more complex logical conditions in programming. We can use
the logical "AND" (&&), logical "OR" (||), logical negation (!) and brackets (()).

Logical "AND", "OR" and "NOT"

This is a short example that demonstrates the power of logical "AND", logical "OR" and logical "NOT":

var animal = "horse";
int speed = 45;

if ((animal == "horse" || animal == "donkey") && (speed > 40))
 Console.WriteLine("Run fast")
else if ((animal == "shark" || animal == "dolphin") && (speed > 45))
 Console.WriteLine("Swim fast")
else if (!(speed > 30 || animal == "turtle"))
 Console.WriteLine("Slow move")

https://youtu.be/kU_ru7GK-Mg
https://judge.softuni.org/Contests/Practice/Index/508#1

Chapter 4.1. More Complex Conditions 151

We shall explain the logical AND (||), the logical OR (||), and the logical NOT (!) in the next few
sections, along with examples and exercises.

The Parenthesis () Operator

Like the rest of the operators in programming, the operators && and || have a priority, as in the case
&& is with higher priority than ||. The operator () serves for changing the priority of operators and

is being calculated first, just like in mathematics. Using parentheses also gives the code better
readability and is considered a good practice.

Example of checking whether a variable belongs to certain ranges:

if (x < 0) || ((x >= 5) && (x <= 10)) || (x > 20)
{
 ...
}

Logical "AND"

As we saw, in some tasks we have to make many checks at once. But what happens when in order to
execute some code more conditions have to be executed and we don't want to make a negation
(else) for each one of them? The option with nested if blocks is valid, but the code would look very
unordered and for sure – hard to read and maintain.

The logical "AND" (operator &&) means a few conditions have

to be fulfilled simultaneously. The table of truthfulness, shown
on the right, is applicable.

Video: Logical "AND"

Watch this video about the logical "AND" operator in programming: https://youtu.be/V86_z8GWarM.

How the && Operator Works?

The && operator accepts a couple of Boolean (conditional) statements, which have a true or false
value, and returns one bool statement as a result. Using it instead of a couple of nested if blocks,
makes the code more readable, ordered and easy to maintain. But how does it work, when we put a
few conditions one after another? As we saw above, the logical "AND" returns true, only when it
accepts as arguments statements with value true. Respectively, when we have a sequence of

arguments, the logical "AND" checks either until one of the arguments is over, or until it meets an
argument with value false.

Example:

bool a = true;
bool b = true;
bool c = false;
bool d = true;
bool result = a && b && c && d;
// false (as d is not being checked)

The program will run in the following way: It starts the check form a, reads it and accepts that it has
a true value, after which it checks b. After it has accepted that a and b return true, it checks the

a b a && b

true
true
false
false

true
false
true
false

true
false
false
false

https://youtu.be/V86_z8GWarM

152 Programming Basics with C#

next argument. It gets to c and sees that the variable has a false value. After the program accepts
that the argument c has a false value, it calculates the expression before c, independent of what the

value of d is. That is why the evaluation of d is being skipped and the whole expression is calculated
as false.

Example: Point in a Rectangle

Checks whether point {x, y} is placed inside the rectangle {x1, y1} – {x2, y2}. The input data is read
from the console and consists of 6 lines: the decimal numbers x1, y1, x2, y2, x and y (as it is guaranteed
that x1 < x2 and y1 < y2).

Sample Input and Output

Input Output Visualization

2
-3
12
3
8
-1

Inside

Solution

A point is internal for a given polygon, if the following four conditions are applied at the same time:

• The point is placed to the right from the left side of the rectangle.

• The point is placed to the left from the right side of the rectangle.

• The point is placed downwards from the upper side of the rectangle.

• The point is placed upwards from the down side of the rectangle.

Chapter 4.1. More Complex Conditions 153

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#2.

Logical "OR"
The logical "OR" (operator ||) means that at least one
among a few conditions is fulfilled. Similar to the operator
&&, the logical "OR" accepts a few arguments of bool
(conditional) type and returns true or false. We can
easily guess that we obtain a value true every time when
at least one of the arguments has a true value (see the
truth table).

Typical example of the logic of this operator is the following: At school the teacher says: "John or
Peter should clean the board". To fulfill this condition (to clean the board), it is possible either just for
John to clean it, or just for Peter to clean it, or both of them to do it together.

Video: Logical "OR"

Watch this video about the logical "OR" in programming: https://youtu.be/e6i-2E66RNU.

How the || Operator Works?

We have already learned what the logical "OR" represents. But how is it actually being achieved? Just
like with the logical "AND", the program checks from left to right the arguments that are given. In
order to obtain true from the expression, it is necessary for just one argument to have a true value.

Respectively, the checking continues until an argument with such value is met or until the arguments
are over. Here is one example of the || operator in action:

bool a = false;
bool b = true;
bool c = false;
bool d = true;
bool result = a || b || c || d;
// true (as c and d are not being checked)

The programs checks a, accepts that it has a value false and continues. Reaching b, it understands
that it has a true value and the whole expression is calculated as true, without having to check c or

d, because their values wouldn't change the result of the expression.

Example: Fruit or Vegetable

Let's check whether a given product is a fruit or a vegetable.

• The "fruits" are banana, apple, kiwi, cherry, lemon and grapes.

• The "vegetables" are tomato, cucumber, pepper and carrot.

• Everything else is "unknown".

Sample Input and Output

Input Output Input Output Input Output

banana fruit tomato vegetable java unknown

a b a || b

true
true
false
false

true
false
true
false

true
true
true
false

https://judge.softuni.org/Contests/Practice/Index/508#2
https://youtu.be/e6i-2E66RNU

154 Programming Basics with C#

Solution

We have to use a few conditional statements with logical "OR" (||):

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#3.

Logical Negation (NOT)

Logical negation (operator !) means a given condition is not fulfilled (see the
truth table on the right).

The operator ! accepts as an argument a bool variable and returns its value.

Video: Logical "NOT"

Watch this video to about the logical "NOT" operator: https://youtu.be/4U7w2ZSAAW4.

Example: Invalid Number

A given number is valid if it is in the range [100 … 200] or it is 0. Do a validation for an invalid number.

Sample Input and Output

Input Output Input Output Input Output

75 invalid 150 (no output) 220 invalid

Solution

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#4.

More Complex Conditions – Examples
Sometimes the conditions may be very complex, so they can require a long bool expression or a
sequence of conditions. Let's take a look at a few examples.

a !a

true false

https://judge.softuni.org/Contests/Practice/Index/508#3
https://youtu.be/4U7w2ZSAAW4
https://judge.softuni.org/Contests/Practice/Index/508#4

Chapter 4.1. More Complex Conditions 155

Example: Point on a Rectangle Border

Write a program that checks whether a point {x, y} is placed onto
any of the sides of a rectangle {x1, y1} – {x2, y2} (see the figure).

The input data is read from the console and consists of 6 lines:
the decimal numbers x1, y1, x2, y2, x and y (as it is guaranteed
that x1 < x2 and y1 < y2). Print "Border" (if the point lies on any
of the sides) or "Inside / Outside" (in the opposite case).

Sample Input and Output

Input Output Input Output

2
-3
12
3
12
-1

Border

 2
-3
12
3
8
-1

Inside / Outside

Solution

The point lies on any of the sides of the rectangle if:

• x coincides with x1 or x2 and at the same time y is between y1 and y2 or

• y coincides with y1 or y2 and at the same time x is between x1 and x2.

This may be checked as follows:

The previous evaluation might be simplified in the following way:

The second way with the additional Boolean variables is longer, but much more understandable than
the first one, isn't it? We recommend when you write logical conditions to make them easy to read
and understand, instead of making them short. Use additional variables with meaningful names. The
names of the variables have to hint what is the value that is kept inside them.

What remains is to finish writing the code to print “Inside / Outside”, if the point is not onto any of
the sides of the rectangle.

156 Programming Basics with C#

Testing in the Judge System

Test your code here: https://judge.softuni.org/Contests/Practice/Index/508#5.

Example: Fruit Shop

A fruit shop sells fruits during weekdays and during weekends different prices:

Fruit Weekday price Weekend price

banana
apple
orange
grapefruit
kiwi
pineapple
grapes

2.50
1.20
0.85
1.45
2.70
5.50
3.85

2.70
1.25
0.90
1.60
3.00
5.60
4.20

Write a program that reads from the console a fruit (banana / apple / …), a day of the week (Monday
/ Tuesday / …) and a quantity (a decimal number) and calculates the price according to the prices from
the tables above. The result has to be printed rounded up to 2 digits after the decimal point. Print
“error” if it is an invalid day of the week or an invalid name of a fruit.

Video: Fruit Store

Watch the video to learn how to solve the "Fruit Store" problem: https://youtu.be/6vZZzil9xBU.

Sample Input and Output

Input Output Input Output Input Output Input Output

orange
Sunday
3

2.70

 kiwi
Monday
2.5

6.75
 grapes

Saturday
0.5

2.10

 tomato
Monday
0.5

error

Solution

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#6.

https://judge.softuni.org/Contests/Practice/Index/508#5
https://youtu.be/6vZZzil9xBU
https://judge.softuni.org/Contests/Practice/Index/508#6

Chapter 4.1. More Complex Conditions 157

Example: Trade Fees

A company is giving the following commissions to its traders according to the city, in which they are
working and the volume of sales s:

City 0 <= s <= 500 500 < s <= 1000 1000 < s <= 10000 s > 10000

Sofia
Varna
Plovdiv

5%
4.5%
5.5%

7%
7.5%
8%

8%
10%
12%

12%
13%

14.5%

Write a program that reads the name of a city (string) and the volume of sales (decimal number) and
calculates the rate of the commission fee. The result has to be shown rounded up to 2 digits after the
decimal point. When there is an invalid city or volume of sales (a negative number), print "error".

Sample Input and Output

Input Output Input Output Input Output

Sofia
1500

120.00
 Plovdiv

499.99
27.50

 Bourgas
-50

error

Video: Trade Fees

Watch a video lesson to learn about the "Trade Fees" problem and how to solve it C#:
https://youtu.be/QqKBLJ4JzJ0.

Solution

When reading the input, we could convert the city into small letters (with the function .ToLower()).
Initially we set the commission fee to -1. It will be changed if the city and the price range are found
in the table of commissions. To calculate the commission according to the city and volume of sales,
we need a few nested if statements, as in the sample code below:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#7.

https://youtu.be/QqKBLJ4JzJ0
https://judge.softuni.org/Contests/Practice/Index/508#7

158 Programming Basics with C#

It is a good practice to use blocks that are enclosed with curly braces { } after if and
else. Also, it is recommended during writing to move aside the code after if and else
with a single tabulation inward, in order to make the code more easily readable.

Switch-Case Conditional Statement
The switch-case condition works as a sequence of if-else blocks. Whenever the work of our
program depends on the value of one variable, instead of making consecutive conditions with if-
else blocks, we can use the conditional switch statement. It is being used for choosing between a

list of possibilities. The statement compares a given value with defined constants and depending on
the result, it takes an action.

We put the variable that we want to compare, inside the brackets after the operator switch and it is
called a "selector". Here the type must be comparable (numbers, strings). Consecutively, the program
starts comparing each value that is found after the case labels. Upon a match, the execution of the

code from the respective place begins and continues until it reaches the operator break. In some
programming languages (like C and C++) break might be skipped, in order to execute a code from
other case construction, until it reaches another operator. In C# though, the presence of break is
mandatory for every case that contains a program logic. When no matches are found, the default
construction is being executed, if such exists.

switch (selector)
{
 case value1:
 construction;
 break;
 case value2:
 construction;
 break;
 case value3:
 construction;
 break;
 …
 default:
 construction;
 break;
}

Video: Switch-Case

Watch the video to learn how to use the switch-case conditional statement in programming:
https://youtu.be/mGJOc4xx5Ho.

Example: Day of the Week

Let's write a program that prints the day of the week (in English) depending
on given number (1 … 7) or "Error!" if an invalid input is given.

Sample Input and Output

A sample input and output are given in the table on the right.

Input Output

1
7
-1

Monday
Sunday
Error!

https://youtu.be/mGJOc4xx5Ho

Chapter 4.1. More Complex Conditions 159

Solution

It is a good practice to put at the first place those case statements that process the
most common situations and leave the case constructions processing the more rear
situations at the end, before the default construction.

Another good practice is to arrange the case labels in ascending order.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#8.

Multiple Labels in Switch-Cases

In C# we have the possibility to use multiple case labels in the switch-case construction, when they
have to execute the same code. This way, when our program finds a match, it will execute the next
code, because after the respective case label there is no code for execution and a break operator.

switch (selector)
{
 case value1:
 case value2:
 case value3:
 construction;
 break;
 case value4:
 case value5:
 construction;
 break;
 …
 default:
 construction;
 break;
}

Example: Animal Type

Write a program that prints the type of the animal depending on its name:

• dog -> mammal

• crocodile, tortoise, snake -> reptile

• others -> unknown

https://judge.softuni.org/Contests/Practice/Index/508#8

160 Programming Basics with C#

Sample Input and Output

Input Input Input Input Input Input

tortoise reptile dog mammal elephant unknown

Solution

We can solve the task with switch-case conditions with multiple labels in the following way:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#9.

Exercises: More Complex Conditions
Now let's exercise our new skills with complex conditions. Let's solve a few practical tasks.

Video: Chapter Summary

Watch this video to review what we learned in this chapter: https://youtu.be/QOhyJXZ0HHQ.

What We Learned in This Chapter?

Before proceeding ahead, let's remind ourselves about the new program constructs and techniques
that we have learned in this chapter.

Nested Conditions

if (condition1)
{
 if (condition2)
 // body;
 else
 // body;
}

Complex Conditions with &&, ||, ! and ()

if ((x == left || x == right) && y >= top && y <= bottom)
 Console.WriteLine(…);

Switch-Case Statements

https://judge.softuni.org/Contests/Practice/Index/508#9
https://youtu.be/QOhyJXZ0HHQ

Chapter 4.1. More Complex Conditions 161

switch (selector)
{
 case value1:
 construction;
 break;
 case value2:
 case value3:
 construction;
 break;
 …
 default:
 construction;
 break;
}

Problem: Cinema

In a cinema hall the chairs are ordered in a rectangle shape in r rows and c columns. There are three
types of screenings with tickets of different prices:

• Premiere – a premiere screening, with price 12.00 EUR.

• Normal – a standard screening, with price 7.50 EUR.

• Discount – a screening for children and students on a reduced price – 5.00 EUR.

Write a program that enters a type of screening (string), number of rows and number of columns in
the hall (integer numbers) and calculates the total income from tickets from a full hall. The result has
to be printed in the same format as in the examples below – rounded up to 2 digits after the decimal
point.

Sample Input and Output

Input Output Input Output

 Premiere
 10
 12

1440.00

 Normal
 21
 13

2047.50

Hints and Guidelines

While reading the input, we could convert the screening type into small letters (with the function
.ToLower()). We create and initialize a variable that will store the calculated income. In another

variable we calculate the full capacity of the hall. We use a switch-case conditional statement to
calculate the income according to the type of the projection and print the result on the console in the
given format (look for the needed C# functionality on the internet). Sample code (parts of the code
are blurred with the purpose to stimulate your thinking and problem-solving skills):

162 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#10.

Problem: Volleyball

Vladimir is a student, lives in Sofia and goes to his hometown from time to time. He is very keen on
volleyball but is busy during weekdays and plays volleyball only during weekends and on holidays.
Vladimir plays in Sofia every Saturday, when he is not working, and he is not traveling to his hometown
and also during 2/3 of the holidays. He travels to his hometown h times a year, where he plays
volleyball with his old friends on Sunday. Vladimir is not working 3/4 of the weekends, during which
he is in Sofia. Furthermore, during leap years Vladimir plays 15% more volleyball than usual. We accept
that the year has exactly 48 weekends, suitable for volleyball. Write a program that calculates how
many times Vladimir has played volleyball through the year. Round the result down to the nearest
whole number (e.g. 2.15 -> 2; 9.95 -> 9).

The input data is read from the console:

• The first line contains the word “leap” (leap year) or “normal” (a normal year with 365 days).

• The second line contains the integer p – the count of holidays in the year (which are not
Saturday or Sunday).

• The third line contains the integer h – the count of weekends, in which Vladimir travels to his
hometown.

Sample Input and Output

Input Output Input Output Input Output Input Output

leap
5
2

45

 normal
3
2

38
 normal

 11
 6

44

 leap
 0
 1

41

Hints and Guidelines

As usual, we read the input data from the console and, to avoid making mistakes, we convert the text
into small letters with the function .ToLower(). Consequently, we calculate the weekends spent in
Sofia, the time for playing in Sofia and the common playtime. At last, we check whether the year is

https://judge.softuni.org/Contests/Practice/Index/508#10

Chapter 4.1. More Complex Conditions 163

leap, we make additional calculation when necessary and we print the result on the console rounded
down to the nearest integer (look for a C# class with such functionality).

A sample code (parts of the code are blurred on purpose to stimulate independent thinking and
problem-solving skills):

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#11.

Problem: * Point in the Figure

The figure consists of 6 blocks with size h * h, placed as in the figure
below. The lower left angle of the building is on position {0, 0}. The upper
right angle of the figure is on position {2*h, 4*h}. The coordinates given
in the figure are for h = 2 (see the figure on the right).

Write a program that enters an integer h and the coordinates of a given
point {x, y} (integers) and prints whether the point is inside the figure
(inside), outside of the figure (outside) or on any of the borders of the
figure (border).

Sample Input and Output

Input Output Input Output Input Output Input Output

2
3
10

outside

 2
3
1

inside
 2

 2
 2

border
 2

 6
 0

border

Input Output Input Output Input Output Input Output

2
0
6

outside

 15
13
55

outside
 15

 29
 37

inside

 15
 37
 18

outside

https://judge.softuni.org/Contests/Practice/Index/508#11

164 Programming Basics with C#

Hints and Guidelines

A possible logic for solving the task (not the only correct one):

• We might split the figure into two rectangles with a common side:

• A point is outer (outside) for the figure, when it is outside both of
the rectangles.

• A point is inner (inside) for the figure, if it is inside one of the
rectangles (excluding their borders) or lies on their common side.

• In other case the point lies on the border of the rectangle (border).

Implementation of the Proposed Idea

An exemplary implementation of the described idea (parts of the code are blurred with the purpose
of stimulating logical thinking and solving skills):

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/508#12.

Lab: * GUI (Desktop) Application: Point and Rectangle
In this chapter we learned how we can use statements with non-trivial conditions. Now let's apply
this knowledge to create something much more interesting: a desktop (GUI) application to visualize a
point in a rectangle. This is a wonderful visualization of one of the tasks from the exercises, where a
point might lay inside, outside or at the border.

The assignment that we have is to develop a graphical (GUI) app for visualizing a point and a rectangle.
The application may look like at the screenshots.

https://judge.softuni.org/Contests/Practice/Index/508#12

Chapter 4.1. More Complex Conditions 165

Using the controls on the left we set the
coordinates of two of the angles of the rectangle
(decimal numbers) and the coordinates of the
point. The application visualizes graphically the
rectangle and the point and prints whether the
point is inside the rectangle (Inside), outside of it
(Outside) or on one of its sides (Border). The
application moves and resizes the coordinates of
the rectangle and the point to be maximum large,
but to fit the field for visualization in the right side
of the application.

Attention: this application is significantly more complex than the previous graphical
applications, which we have developed until now, because it requires using functions
for drawing and non-trivial calculations for resizing and moving the rectangle and the
point. Instructions for building the application step by step follow.

Creating a New C# Project and Adding Controls

We create a new project of type “Windows Forms Application” with a suitable name, for example
“Point-and-Rectangle”:

166 Programming Basics with C#

We arrange the controls inside the form, as it is shown in the screenshot below:

• 6 boxes for entering a number (NumericUpDown), for the x1, y1, x2 and y2 coordinates of the
rectangle and for the x and y coordinates of the point.

• Labels (Label) before each box for entering a number.

• A button (Button) for drawing the rectangle and the point.

• A text block for the result (Label) – the green box at the screenshot.

• A rectangular drawing box (PictureBox) for visualizing the rectangle and the point.

We set the sizes and properties of the controls to look as close as the ones at the screenshot.

Configuring the UI Controls

We set the following recommended settings of the controls:

• For the main form (Form) that contains all of the controls:

o (name) = FormPointAndRectangle

o Text = Point and Rectangle

o Font.Size = 12

o Size = 700, 410

o MinimumSize = 500, 400

o FormBorderStyle = FixedSingle

Chapter 4.1. More Complex Conditions 167

• For the fields for entering a number (NumericUpDown):

o (name) = numericUpDownX1; numericUpDownY1; numericUpDownX2;
numericUpDownY2; numericUpDownX; numericUpDownY

o Value = 2; -3; 12; 3; 8; -1

o Minimum = -100000

o Maximum = 100000

o DecimalPlaces = 2

• For the button (Button) for visualization of the rectangle and the point:

o (name) = buttonDraw

o Text = Draw

• For the text block for the result (Label):

o (name) = labelLocation

o AutoSize = false

o BackColor = PaleGreen

o TextAlign = MiddleCenter

• For the field with the draft (PictureBox):

o (name) = pictureBox

o Anchor = Top, Bottom, Left, Right

Handling Events

We have to catch the following events to write the C# code that will be executed upon their
occurrence:

• The event Click the button buttonDraw (it is called upon pressing the button).

• The event ValueChanged of the controls for entering numbers numericUpDownX1,
numericUpDownY1, numericUpDownX2, numericUpDownY2, numericUpDownX and nume
ricUpDownY (it is called upon changing the value in the control that enters a number).

• The event Load of the form FormPointAndRectangle (it is called upon starting the application,
before the main form is shown on the display).

• The event Resize of the form FormPointAndRectangle (it is called upon changing the size of
the main form).

All of the above-mentioned events will execute the same action Draw(), which will visualize the
rectangle and the point and show whether it's inside, outside or onto one of the sides. The code may
look like this:

private void buttonDraw_Click(object sender, EventArgs e)
{
 Draw();
}

private void FormPointAndRectangle_Load(object sender, EventArgs e)
{
 Draw();
}

private void FormPointAndRectangle_Resize(object sender, EventArgs e)

168 Programming Basics with C#

{
 Draw();
}

private void numericUpDownX1_ValueChanged(object sender, EventArgs e)
{
 Draw();
}

 /* TODO: implement in the same way the event handlers
 numericUpDownY1_ValueChanged,
 numericUpDownX2_ValueChanged,
 numericUpDownY2_ValueChanged,
 numericUpDownX_ValueChanged and
 numericUpDownY_ValueChanged */

private void Draw()
{
 // TODO: implement this a bit later …
}

Printing Point Position Compared to the Rectangle

Let's begin from the easier part: printing the information about the point's position (Inside, Outside or
Border). The code must look like this:

private void Draw()
{
 // Get the rectangle and point coordinates from the form
 var x1 = this.numericUpDownX1.Value;
 var y1 = this.numericUpDownY1.Value;
 var x2 = this.numericUpDownX2.Value;
 var y2 = this.numericUpDownY2.Value;
 var x = this.numericUpDownX.Value;
 var y = this.numericUpDownY.Value;

 // Display the location of the point: Inside/Border/Outside
 DisplayPointLocation(x1, y1, x2, y2, x, y);
}

private void DisplayPointLocation(decimal x1, decimal y1,
 decimal x2, decimal y2, decimal x, decimal y)
{
 var left = Math.Min(x1, x2);
 var right = Math.Max(x1, x2);
 var top = Math.Min(y1, y2);
 var bottom = Math.Max(y1, y2);
 if (x > left && x < right && …)
 {
 this.labelLocation.Text = "Inside";
 this.labelLocation.BackColor = Color.LightGreen;
 }
 else if (… || y < top || y > bottom)

Chapter 4.1. More Complex Conditions 169

 {
 this.labelLocation.Text = "Outside";
 this.labelLocation.BackColor = Color.LightSalmon;
 }
 else
 {
 this.labelLocation.Text = "Border";
 this.labelLocation.BackColor = Color.Gold;
 }
}

The code above takes the coordinates of the rectangle and the point and checks whether the point is
inside, outside or on the borders of the rectangle. By visualizing the result, the color of the background
of the text block that contains it is changed.

Think about how to finish the uncompleted (on purpose) conditions in the if statements! The code
above purposely doesn't compile, because the purpose is to make you think about how and why it
works and finish on your own the missing parts.

Visualization of the Rectangle and the Point

What remains is to implement the most complex part: visualization of the rectangle and the point in
the control pictureBox with resizing. We can help ourselves with the code below, which makes some
calculations and draws a blue rectangle and a dark blue circle (the point) according to the coordinates
given in the form. Unfortunately, the complexity of the code exceeds the material learned until the
present moment and it is complicated to explain in detail exactly how it works. There are comments
for orientation. This is the full version of the action Draw():

private void Draw()
{
 // Get the rectangle and point coordinates from the form
 var x1 = this.numericUpDownX1.Value;
 var y1 = this.numericUpDownY1.Value;
 var x2 = this.numericUpDownX2.Value;
 var y2 = this.numericUpDownY2.Value;
 var x = this.numericUpDownX.Value;
 var y = this.numericUpDownY.Value;

 // Display the location of the point: Inside/Border/Outside
 DisplayPointLocation(x1, y1, x2, y2, x, y);

 // Calculate the scale factor (ratio) for the
 // diagram holding the and point in order to
 // fit them well in the picture box
 var minX = Min(x1, x2, x);
 var maxX = Max(x1, x2, x);
 var minY = Min(y1, y2, y);
 var maxY = Max(y1, y2, y);
 var diagramWidth = maxX - minX;
 var diagramHeight = maxY - minY;
 var ratio = 1.0m;
 var offset = 10;
 if (diagramWidth != 0 && diagramHeight != 0)
 {
 var ratioX = (pictureBox.Width - 2 * offset - 1) / diagramWidth;
 var ratioY = (pictureBox.Height - 2 * offset - 1) / diagramHeight;

170 Programming Basics with C#

 ratio = Math.Min(ratioX, ratioY);
 }

 // Calculate the scaled rectangle coordinates
 var rectLeft = offset + (int)Math.Round((Math.Min(x1, x2) - minX) * ratio);
 var rectTop = offset + (int)Math.Round((Math.Min(y1, y2) - minY) * ratio);
 var rectWidth = (int)Math.Round(Math.Abs(x2 - x1) * ratio);
 var rectHeight = (int)Math.Round(Math.Abs(y2 - y1) * ratio);
 var rect = new Rectangle(rectLeft, rectTop, rectWidth, rectHeight);

 // Calculate the scaled point coordinates
 var pointX = (int)Math.Round(offset + (x - minX) * ratio);
 var pointY = (int)Math.Round(offset + (y - minY) * ratio);
 var pointRect = new Rectangle(pointX - 2, pointY - 2, 5, 5);

 // Draw the rectangle and point
 pictureBox.Image = new Bitmap(pictureBox.Width, pictureBox.Height);
 using (var g = Graphics.FromImage(pictureBox.Image))
 {
 // Draw diagram background (white area)
 g.Clear(Color.White);

 // Draw the rectangle (scaled to the picture box size)
 var pen = new Pen(Color.Blue, 3);
 g.DrawRectangle(pen, rect);

 // Draw the point (scaled to the picture box size)
 pen = new Pen(Color.DarkBlue, 5);
 g.DrawEllipse(pen, pointRect);
 }
}

private decimal Min(decimal val1, decimal val2, decimal val3)
{
 return Math.Min(val1, Math.Min(val2, val3));
}

private decimal Max(decimal val1, decimal val2, decimal val3)
{
 return Math.Max(val1, Math.Max(val2, val3));
}

In the code above we can see a lot of conversion of types, because different types of numbers are
used (decimal numbers, real numbers and integers) and sometimes it is required to do conversion
between them.

Compiling and Testing the Application

In the end we compile the code. If there are errors, we eliminate them. The most probable reason for
an error is an inconsistent name of some of the controls or if writing the code in the wrong place. We
start the application and test it. We enter different data to see whether it behaves correctly. If you
have problems with the sample project above, you can ask for help in the SoftUni official discussion
forum (http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

http://forum.softuni.org/
https://fb.com/softuni.org

Chapter 4.2. More Complex Conditions – Exam
Problems
The previous chapter introduced you to nested conditions in C#. Via nested conditions, the program
logic in a particular application can be represented using if conditional statements that are nested
one into another. We also explained the switch-case conditional statement that allows selecting

from a list of options.

Now we are going to solve some exercises and make sure we have in-depth understanding of the
material, by discussing a number of more complex problems that had been given to students on exams.

More Complex Conditions – Quick Review
Before moving to the problems, let's first recall what nested conditions are.

Nested Conditions

if (condition1)
{
 if (condition2)
 // body;
 else
 // body;
}

Remember that it is not a good practice to write deeply nested conditional statements
(with more than three levels of nesting). Avoid nesting of more than three conditional
statements inside one another. This complicates the code and makes its reading and
understanding difficult.

Switch-Case Conditions

When the program operation depends on the value of a variable, instead of doing consecutive checks
with multiple if-else blocks, we can use the switch-case conditional statement.

switch (selector)
{
 case value1:
 statement;
 break;
 case value2:
 statement;
 break;

 default:
 statement;
 break;
}

The structure consists of a selector (an expression that calculates a particular value) + multiple case
labels followed by commands, ending in a break. The selector type can be an integer, string or

172 Programming Basics with C#

enumeration (enum). Now, after we refreshed our knowledge on how to use and nest conditional
statements in order to implement more complex conditions and program logic, let's solve some exam
problems.

Problem: On Time for the Exam
A student has to attend an exam at a particular time (for example at 9:30 am). They arrive in the exam
room at a particular time of arrival (for example 9:40 am). It is considered that the student has arrived
on time, if they have arrived at the time when the exam starts or up to half an hour earlier. If the
student has arrived more than 30 minutes earlier, the student has come too early. If they have arrived
after the time when the exam starts, they are late.

Write a program that inputs the exam starting time and the time of student's arrival, and prints if the
student has arrived on time, if they have arrived early or if they are late, as well as how many hours
or minutes the student is early or late.

Sample Input and Output

Input Output Input Output Input Output

 9
 30
 9
 50

Late
20 minutes after
the start

 16
 00
 15
 00

Early
1:00 hours before
the start

 9
 00
 8
 30

On time
30 minutes before
the start

Input Output Input Output Input Output

9
00
10
30

Late
1:30 hours after the
start

 14
 00
 13
 55

On time
5 minutes before the
start

 10
 00
 10
 00

On time

Input Data

Read the following four integers (one on each line) from the console:

• The first line contains exam starting time (hours) – an integer from 0 to 23.

• The second line contains exam starting time (minutes) – an integer from 0 to 59.

• The third line contains hour of arrival – an integer from 0 to 23.

• The fourth line contains minutes of arrival – an integer from 0 to 59.

Output Data

Print the following on the first line on the console:

• "Late", if the student arrives later compared to the exam starting time.

• "On time", if the student arrives exactly at the exam starting time or up to 30 minutes earlier.

• "Early", if the student arrives more than 30 minutes before the exam starting time.

If the student arrives with more than one minute difference compared to the exam starting time, print
on the next line:

Chapter 4.2. More Complex Conditions – Exam Problems 173

• "mm minutes before the start" for arriving less than an hour earlier.

• "hh:mm hours before the start" for arriving 1 hour or earlier. Always print minutes using 2 digits,
for example "1:05".

• "mm minutes after the start" for arriving more than an hour late.

• "hh:mm hours after the start" for arriving late with 1 hour or more. Always print minutes using
2 digits, for example "1:03".

Hints and Guidelines

Let’s solve the problem step by step.

Processing the Input Data

According to the assignment, we expect four lines containing different integers to be passed.
Examining the provided parameters, we can use the int type, as it is suitable for the expected values.
We simultaneously read the input data and parse the string value to the selected data type for integer.

Examining the expected output, we can create variables that contain the different output data types,
in order to avoid using the so called "magic strings" in the code.

Calculating Exam Start Time and Student Arrival Time

After reading the input data, we can now start writing the logic for calculating the result. Let's first
calculate the start time of the exam in minutes for easier and more accurate comparison.

Let's also calculate the student arrival time using the same logic.

What remains is to calculate the difference between the two times, in order to determine when and
what time compared to the exam time the student arrived at.

Checking If the Student Arrived on Time or Late

Our next step is to do the required checks and calculations, and finally we will print the output. Let's
separate the code into two parts:

• First, let's show when the student arrived – were they early, late or on time. In order to do that,
we will use an if-else statement.

• After that, we will show the time difference, if the student arrives in a different time compared
to the exam starting time.

In order to spare one additional check (else), we can, by default, assume that the student was late.

174 Programming Basics with C#

After that, according to the condition, we will check whether the difference in times is more than 30
minutes. If this is true, we assume that the student is early. If we do not match the first condition, we
need to check if the difference is less than or equal to zero (<= 0), by which we are checking the
condition whether the student arrived within the range of 0 to 30 minutes before the exam.

In all other cases we assume that the student was late, which we set as default, and no additional
check is needed.

Calculating Time Difference

Finally, we need to understand and print what is the time difference between exam start time and
student arrival time, as well as whether this time difference indicates time of arrival before or after
the exam start.

We check whether the time difference is more than one hour, in order to print hours and minutes in
the required format, or less than one hour, in order to print only minutes as a format and description.

We need to do one more check: whether the time of student's arrival is before or after the exam start.

Chapter 4.2. More Complex Conditions – Exam Problems 175

Printing the Result

Finally, what remains is to print the result on the console. According to the requirements, if the student
arrived right on time (not even a minute difference), we do not need to print a second result. This is
why we apply the following condition:

Actually, for the purposes of the task, printing the result on the console can be done on a much earlier
stage – during the calculations. This, however, is not a very good practice. Why?

Let's examine the idea that our code is not 10 lines, but 100 or 1000! One day, printing the result will
not be done on the console, but will be written in a file or displayed as a web application. Then, how
many places in the code you will make changes at, due to such a correction? Are you sure you won't
miss some places?

Always consider the code that contains logical calculations as a separate part, different
from the part that processes the input and output data. It has to be able to work
regardless of how the data is passed to it and where the result will be displayed.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/509#0.

Problem: Trip
It is strange, but most people start planning their vacations well in advance. A young programmer from
Bulgaria has certain budget and spare time in a particular season.

Write a program that accepts as input the budget (in BGN – Bulgarian levs) and season, and as output
displays programmer's vacation place and the amount of money they will spend.

The budget determines the destination, and the season determines what amount of the budget will
be spent. If the season is summer, the programmer will go camping, if it is winter – they will stay in a
hotel. If it is in Europe, regardless of the season, the programmer will stay in a hotel. Each camp or
hotel, according to the destination, has its own price, which corresponds to a particular percentage of
the budget:

• If 100 BGN or less – somewhere in Bulgaria.

o Summer – 30% of the budget.

o Winter – 70% of the budget.

• If 1000 BGN or less – somewhere on the Balkans.

o Summer – 40% of the budget.

https://judge.softuni.org/Contests/Practice/Index/509#0

176 Programming Basics with C#

o Winter – 80% of the budget.

• If more than 1000 BGN – somewhere in Europe.

o Upon traveling in Europe, regardless of the season, the programmer will spend 90% of
the budget.

Input Data

The input data will be read from the console and will consist of two lines:

• The first line holds the budget – real number in the range [10.00 … 5000.00].

• The second line holds one of two possible seasons: "summer" or "winter".

Output Data

Two lines must be printed on the console.

• On the first line – "Somewhere in {destination}" among "Bulgaria", "Balkans" and "Europe".

• On the second line – "{Vacation type} – {Amount spent}".

o The Vacation can be in a "Camp" or "Hotel".

o The Amount must be rounded up to the second digit after the decimal point.

Sample Input and Output

Input Output Input Output

50
summer

Somewhere in Bulgaria
Camp – 15.00

 75
winter

Somewhere in Bulgaria
Hotel – 52.50

Input Output Input Output

312
summer

Somewhere in Balkans
Camp – 124.80

 1500
summer

Somewhere in Europe
Hotel – 1350.00

Hints and Guidelines

Typically, as for the other tasks, we can separate the solution into the following parts: reading the
input data, doing calculations, printing the result.

Processing the Input Data

While reading carefully the requirements, we understand that we expect two lines of input data. The
first parameter is a real number, for which we need to pick an appropriate variable type. For higher
level of calculation accuracy, we can pick decimal as a variable for the budget and – string for the
season.

Always take into consideration what value type is passed in the input data, as well as
what type these need to be converted to, in order for the program conditions to work
properly!

Chapter 4.2. More Complex Conditions – Exam Problems 177

Example: When you need to do money calculations in a task, use decimal for higher level of accuracy.

Calculations

Let's create and initialize the variables needed for applying the logic and calculations.

Similarly to the example in the previous task, we can initialize variables with some of the output results,
in order to spare additional initialization.

When examining once again the problem requirements, we notice that the main distribution of where
the vacation will take place is determined by the value of the budget, i.e. our main logic is divided into
two cases:

• If the budget is less than a particular value.

• If it is less than another value or is more than the specified border value.

Based on the way we arrange the logical scheme (the order in which we will check the border values),
we will have more or less conditions in the solution. Why?

After that, we need to apply a condition to check the value of the season. Based on it, we will
determine what percentage of the budget will be spent, as well as where the programmer will stay –
in a hotel or a camp.

This is a sample code that may be used to implement the above idea:

https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/blob/master/assets/chapter-4-2-images/02.Trip-03.png
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/blob/master/assets/chapter-4-2-images/02.Trip-04.png

178 Programming Basics with C#

Printing the Result

What remains is to display the calculated result on the console:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/509#1.

Problem: Operations with Numbers
Write a program that reads two integers (n1 and n2) and an operator that performs a particular
mathematical operation with them. Possible operations are: summing up (+), subtraction (-), mul-
tiplying (*), division (/) and modular division (%). Upon summing up, subtracting and multiplying, the
console must print the result and display whether it is even or odd number. Upon regular division –
just the result, and upon modular division – the remainder. You need to take into consideration the
fact that the divisor can be equal to zero (= 0) and dividing by zero is not possible. In this case, a

special notification must be printed.

Input Data

3 lines are read from the console:

• N1 – integer within the range [0 … 40 000].

• N2 – integer within the range [0 … 40 000].

• Operator – one character among: "+", "-", "*", "/", "%".

Output Data

Print the output as a single line on the console:

https://judge.softuni.org/Contests/Practice/Index/509#1
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/blob/master/assets/chapter-4-2-images/02.Trip-04.png
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/blob/master/assets/chapter-4-2-images/02.Trip-05.png

Chapter 4.2. More Complex Conditions – Exam Problems 179

• If the operation is summing up, subtraction or multiplying:

o "{N1} {operator} {N2} = {output} - {even/odd}".

• If the operation is division:

o "{N1} / {N2} = {output}" – the result is formatted up to the second digit after the decimal
point.

• If the operation is modular division:

o "{N1} % {N2} = {remainder}".

• In case of dividing by 0 (zero):

o "Cannot divide {N1} by zero".

Sample Input and Output

Input Output Input Output Input Output

10
1
-

10 - 1 = 9 - odd
 7

3
*

7 * 3 = 21 - odd
 10

12
+

10 + 12 = 22 - even

7
3
*

7 * 3 = 21 - odd
 123

12
/

123 / 12 =
10.25

 10
3
%

10 % 3 = 1

Hints and Guidelines

The problem is not complex, but there are a lot of code lines to write.

Processing the Input Data

Upon reading the requirements, we understand that we expect three lines of input data. The first two
lines enter two integers (within the specified range), and the third line – an arithmetical symbol.

Condition for 0

Let's create and initialize the variables needed for the logic and calculations. In one variable we will
store the calculations output, and the other one we will use for the final output of the program.

When carefully reading the requirements, we understand that there are cases where we don't need
to do any calculations, and simply display a result.

Therefore, we can first check if the second number is 0 (zero), as well as whether the operation is
division or modular division, and then initialize the output.

180 Programming Basics with C#

Let's place the output as a value upon initializing the output parameter. This way we can apply only
one condition – whether it is needed to recalculate or replace this output.

Based on the approach that we choose, our next condition will be either a simple else or a single if.
In the body of this condition, using additional conditions regarding the manner of calculating the
output based on the passed operator, we can separate the logic based on the structure of the
expected output.

Condition for Division and Modular Division

From the requirements we can see that for summing up (+), subtraction (-) or multiplying (*) the

expected output has the same structure: "{n1} {operator} {n2} = {output} – {even/odd}", whereas for
division (/) and modular division (%) the output has a different structure.

Condition for Sum, Subtract and Multiply

We finish the solution by applying conditions for summing up, subtraction and multiplying:

Chapter 4.2. More Complex Conditions – Exam Problems 181

For short and clear conditions, such as the above example for even and odd number, you can use a
ternary operator. Let's examine the possibility to apply a condition with or without a ternary operator.

Using Ternary Operator

Without using a ternary operator, the code is longer but easier to read:

Upon using a ternary operator, the code is much shorter but may require additional efforts to read
and understand the logic:

Printing the Output

Finally, what remains is to print the calculated result on the console:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/509#2.

Problem: Game Tickets
A group of football fans decided to buy tickets for Euro Cup 2016. The tickets are sold in Bulgarian
leva (BGN) in two price categories:

• VIP – 499.99 BGN (Bulgarian leva)

• Normal – 249.99 BGN (Bulgarian leva)

The football fans have a shared budget, and the number of people in the group determines what
percentage of the budget will be spent on transportation:

• 1 to 4 – 75% of the budget

• 5 to 9 – 60% of the budget

• 10 to 24 – 50% of the budget

• 25 to 49 – 40% of the budget

• 50 or more – 25% of the budget

https://judge.softuni.org/Contests/Practice/Index/509#2

182 Programming Basics with C#

Write a program that calculates whether the money left in the budget will be enough for the football
fans to buy tickets in the selected category, as well as how much money they will have left or be
insufficient.

Input Data

The input data is read from the console and contains exactly 3 lines:

• The first line holds the budget – real number within the range [1 000.00 …
1 000 000.00].

• The second line holds the category – "VIP" or "Normal".

• The third line holds the number of people in the group – an integer within the range [1 … 200].

Output Data

Print the following on the console as one line:

• If the budget is sufficient:

o "Yes! You have {N} leva left." – where N is the amount of remaining money for the group.

• If the budget is NOT sufficient:

o "Not enough money! You need {М} leva." – where М is the amount that is insufficient.

The amounts must be formatted up to the second digit after the decimal point.

Sample Input and Output

Input Output Explanations

 1000
 Normal
 1

Yes! You have
0.01 leva left.

1 person: 75% of the budget are spent on transportation.
Remaining amount: 1000 – 750 = 250.
Category Normal: the ticket price is 249.99 * 1 = 249.99
249.99 < 250: the person will have 250 - 249.99 = 0.01 money left

Input Output Explanations

30000
VIP
49

Not enough money!
You need 6499.51
leva.

49 persons: 40% of the budget are spent on transportation.
Remaining amount: 30000 - 12000 = 18000.
Category VIP: the ticket costs 499.99 * 49.
24499.51 < 18000: the amount is not enough, more money
needed: 24499.51 - 18000 = 6499.51

Hints and Guidelines

We will read the input data and perform the calculations described in the task requirements, in order
to check if the money will be sufficient.

Processing the Input Data

Let's read carefully the requirements and examine what we expect to take as input data, what is
expected to return as a result, as well as what are the main steps for solving the problem.

For a start, let's process and save the input data in appropriate variables:

Chapter 4.2. More Complex Conditions – Exam Problems 183

Calculating Transportation Costs

Let's create and initialize the variables needed for doing the calculations:

Let's review the requirements once again. We need to perform two different block calculations.

By the first set of calculations we must understand what part of the budget has to be spent on
transportation. You will notice that the logic for doing these calculations only depends on the number
of people in the group. Therefore, we will do a logical breakdown according to the number of football
fans.

We will use conditional statement – a sequence of if-else blocks.

Calculating Ticket Costs

By the second set of calculations we need to find out what amount will be needed for purchasing
tickets for the group. According to the requirements, this only depends on the type of tickets that we
need to buy. Let's use a switch-case conditional statement:

184 Programming Basics with C#

Calculating Total Costs

Once we have calculated the transportation costs and ticket costs, what remains is to calculate the
end result and understand if the group of football fans will attend Euro Cup 2016 or not, provided
the available parameters.

For the output, in order to spare one else condition in the construction, we will assume that the
group can, by default, attend Euro Cup 2016.

Printing the Result

Finally, we need to display the calculated result on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/509#3.

Problem: Hotel Room
A hotel offers two types of rooms: studio and apartment. Prices are in Bulgarian levs (BGN / lv).

Write a program that calculates the price of the whole stay for a studio and apartment. Prices depend
on the month of the stay:

May and October June and September July and August

Studio – 50 BGN/night Studio – 75.20 BGN/night Studio – 76 BGN/night

Apartment – 65 BGN/night Apartment – 68.70 BGN/night Apartment – 77 BGN/night

The following discounts are also offered:

• For a studio, in case of more than 7 stays in May and October: 5% discount.

• For a studio, in case of more than 14 stays in May and October: 30% discount.

• For a studio, in case of more than 14 stays in June and September: 20% discount.

• For an apartment, in case of more than 14 stays, no limitation regarding the month: 10%
discount.

Input Data

The input data is read from the console and contains exactly two lines:

https://judge.softuni.org/Contests/Practice/Index/509#3

Chapter 4.2. More Complex Conditions – Exam Problems 185

• The first line contains the month – May, June, July, August, September or October.

• The second line is the number of stays – integer within the range [0 … 200].

Output Data

Print the following two lines on the console:

• On the first line: "Apartment: { price for the whole stay } lv."

• On the second line: "Studio: { price for the whole stay } lv."

The price for the whole stay must be formatted up to two symbols after the decimal point.

Sample Input and Output

Input Output Comments

 May
 15

Apartment: 877.50 lv.
Studio: 525.00 lv.

In May, in case of more than 14 stays, the discount for
a studio is 30% (50 – 15 = 35), and for the apartment is
10% (65 – 6.5 = 58.5).
The whole stay in the apartment: 877.50 lv.

 The whole stay in the studio: 525.00 lv.

Input Output Input Output

June
14

Apartment: 961.80 lv.
Studio: 1052.80 lv

 August
20

Apartment: 1386.00 lv.
Studio: 1520.00 lv.

Hints and Guidelines

We will read the input data and do the calculations according to the provided price list and the
discount rules, and finally print the result.

Processing the Input Data

According to the task requirements we expect to read two lines of input data: the month in which the
stay is planned (first line), and the number of stays (second line).

Let's process and store the input data in the appropriate parameters:

Creating Helper Variables

Now let's create and initialize the variables needed for the calculations:

When doing an additional analysis of the requirements, we understand that our main logic depends
on what month is passed and what is the number of stays.

186 Programming Basics with C#

In general, there are different approaches and ways to apply the above conditions, but let's examine
a basic switch-case conditional statement, as in the individual case blocks we will use if and if-
else conditional statements.

Calculating Prices for May and October

Let's start with the first group of months: May and October. For these two months the price for stay
is the same for both types of accommodation – in a studio or in an apartment. Therefore, the only
thing that remains is to apply an internal condition regarding the number of stays and recalculate the
relevant price (if needed).

Calculating Prices for June, September, July and August

To some extent, the logic and calculations will be identical for the following months.

Chapter 4.2. More Complex Conditions – Exam Problems 187

Formatting the Output Data

After calculating the relevant prices and the total amount for the stay, now let's prepare the formatted
result. Before that, we should store it in our output parameters – studioInfo and apartmentInfo.

In order to calculate the output parameters, we will use the decimal.Round(Decimal, Int32)
method. This method rounds the decimal number up to a specified number of characters after the
decimal point. In our case, we will round the decimal number up to 2 digits after the decimal point.

Printing the Result

Finally, what remains is to print the calculated results on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/509#4.

https://judge.softuni.org/Contests/Practice/Index/509#4

https://softuni.org

Chapter 5.1. Loops (Repetitions)
In the present chapter we will get familiar how to repeat blocks of commands, also known in software
development as "loops". We will write a number of simple loops using the for operator in its simplest
form (for i = 1 … n). Finally, we will solve series of practical problems that require repeating of

series of actions, using loops.

Video: Chapter Overview
Watch a video lesson to review what will we learn in this chapter about loops in programming:
https://youtu.be/GIE2smfXg2g.

Introduction to Simple Loops by Examples
In programming we can execute a block of code multiple times using a simple for-loop like this:

for (int i = 1; i <= 5; i++)
{
 Console.WriteLine(i);
}

Run the above code example: https://repl.it/@nakov/for-loop-1-to-5-csharp.

The above code prints the numbers 1, 2, ..., 5. The output is as follows:

1
2
3
4
5

We can enter multiple numbers from the console and process them using loops like this:

1. Read the count n of the numbers.

2. In a for-loop read and process n times one single number.

This is how the above idea may work:

int n = int.Parse(Console.ReadLine());
long sum = 0;
for (int i = 0; i < n; i++)
{
 int num = int.Parse(Console.ReadLine());
 sum += num;
}
Console.WriteLine("Sum = {0}", sum);

Run the above code example: https://repl.it/@nakov/for-loop-sum-n-numbers-csharp.

The output from the above example may look like this (when we enter 3 numbers: 10, 20 and 30):

3
10
20
30
Sum = 60

https://youtu.be/GIE2smfXg2g
https://repl.it/@nakov/for-loop-1-to-5-csharp
https://repl.it/@nakov/for-loop-sum-n-numbers-csharp

190 Programming Basics with C#

Let's explain in greater detail how to use simple for loops to repeat blocks of code multiple times.

For Loops (Repeating Code Blocks)
In programming it is often required to perform a block of commands multiple times. In order to do
that, the so-called loops are used. Let's examine an example of a for loop that passes sequentially
through the numbers from 1 to 10 and prints them:

The loop starts with the for operator and passes through all values for a particular variable in a given
range, for example the numbers from 1 to 10 (included), and for each value it performs a series of
commands.

Video: Simple For-Loops

Watch the video about the for-loop statement: https://youtu.be/yzEamf5L1ZY.

Syntax: For-Loop

Upon declaring the loop, you can specify a start value and an end value. The body of the loop is
usually enclosed in curly brackets { } and represents a block of one or multiple commands. The figure
below shows the structure of a for loop:

In most cases a for loop is run between 1 and n times (for example from 1 to 10). The purpose of the

loop is to pass sequentially through the numbers 1, 2, 3, …, n and for each of them to perform a
particular action. In the example above, the i variable accepts values from 1 to 10 and the current
value is printed in the body of the loop. The loop repeats 10 times and each of these repetitions is
called an "iteration".

Now, let's demonstrate how to use the for loop in practice by a few simple examples.

Example: Numbers from 1 to 100
Write a program that prints the numbers from 1 to 100. The program does not accept input and prints
the numbers from 1 to 100 sequentially, each on a separate line.

Video: Numbers 1...100

Watch the video lesson to learn how to print the numbers from 1 to 100 using a for-loop:
https://youtu.be/pui8KxT_uPI.

https://youtu.be/yzEamf5L1ZY
https://youtu.be/pui8KxT_uPI

Chapter 5.1. Loops (Repetitions) 191

Hints and Guidelines

We can solve the problem using a for loop, via which we will pass through the numbers from 1 to

100 using the i variable, and print the numbers in the body of the loop:

Start the program using [Ctrl+F5] and test it:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#0.

You should get 100 points (fully accurate solution).

Example: Numbers up to 1000, Ending by 7
Write a program that finds all numbers within the range [1 … 1000] that end in 7.

Video: Numbers 1...1000 Ending by 7

Watch the video lesson to learn how to print all numbers in the range [1...1000], ending by 7:
https://youtu.be/oFJ72d5GUoo.

https://judge.softuni.org/Contests/Practice/Index/510#0
https://youtu.be/oFJ72d5GUoo

192 Programming Basics with C#

Hints and Guidelines

We can solve the problem by combining a for loop for passing through the numbers from 1 to 1000

and a condition to check if each of the numbers ends in 7. Of course, there are other solutions too,
but let's solve the problem using a loop + condition:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#1.

Example: All Latin Letters
Write a program that prints the letters of the English Alphabet: a, b, c, …, z.

Video: Latin Letters

Watch the following video lesson to learn how to print the Latin letters using a for-loop:
https://youtu.be/EKNPt69wsFM.

Hints and Guidelines

It is good to know that the for loops don't only work with numbers. We can solve the task by running
a for loop that passes sequentially through all letters in the English alphabet:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#2.

Code Snippet for the for Loop in Visual Studio

In software development, we regularly need to write loops, dozens of times a day. This is why in most
development environments (IDE) there are code snippets for writing loops. An example of such
snippet is the snippet for for loop in Visual Studio. Write for in the C# code editor in Visual Studio
and hit [Tab] twice. Visual Studio will open a snippet for you and write a full for loop:

https://judge.softuni.org/Contests/Practice/Index/510#1
https://youtu.be/EKNPt69wsFM
https://judge.softuni.org/Contests/Practice/Index/510#2

Chapter 5.1. Loops (Repetitions) 193

Try it yourselves, in order to master the skill of using the code snippet for for loop in Visual Studio.

Exercises: Loops (Repetitions)
Now that we are familiar with loops, it is time to practice our newly acquired skills, and as you know,
this is achieved by a lot of code writing. Let's solve some practical problems.

Video: Chapter Summary

Watch this video to review what we learned in this chapter: https://youtu.be/4G_oSUcx9ko.

What We Learned in This Chapter?

We can repeat a code block using a for loop:

We can read a sequence of n numbers from the console this way:

Blank Solution in Visual Studio

At the start with the exercises,
we will create a Visual Studio
solution with the idea to hold
the code for each exercises
problem in a separate C#
project inside the solution.

Create a (Blank Solution) in
Visual Studio, as it is shown at
the screenshot.

Set it up to start the current
project by default (not the first
one in the solution). Do that
by right clicking on Solution
'Loops', then on [Set StartUp
Projects…], the choose the
option [Current selection].

https://youtu.be/4G_oSUcx9ko

194 Programming Basics with C#

Problem: Summing up Numbers

Write a program that inputs n integers and sums them up.

• The first line of the input holds the number of integers n.

• Each of the following n lines holds an integer for summing.

• Sum up the numbers and finally print the result.

Sample Input and Output

Input Output Input Output Input Output Input Output Input Output

2
 10
 20

30

3

-10
-20
-30

-60

 4
45
-20
7

11

43

1
 999

999

0 0

Video: Summing Numbers

Watch this video to learn how to sum numbers in for-loop: https://youtu.be/t7PAichwl7k.

Hints and Guidelines

We can solve the problem with summing up numbers in the following way:

• We read the input number n.

• We initially start with a sum sum = 0.

• We run a loop from 1 to n. On each step of the loop, we read the number num and add it to the
sum sum.

• Finally, we print the calculated amount sum.

Below is the source code for the solution:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#3.

Problem: Max Number

Write a program that enters n integers (n > 0) and finds the max number among them (the largest).
The first input line specifies the number of integers n. The next n lines hold the integers, one per line.

https://youtu.be/t7PAichwl7k
https://judge.softuni.org/Contests/Practice/Index/510#3

Chapter 5.1. Loops (Repetitions) 195

Sample Input and Output

Input Output Input Output Input Output Input Output Input Output

2
 100
 99

100

3

 -10
 20
 -30

20

 4
45
-20
7

99

99

1
999

999

2
-1
-2

-1

Video: Largest Number

Watch this video lesson to learn how to find the largest number among a sequence of number:

https://youtu.be/KErfOdOuezE.

Hints and Guidelines

We will first enter one number n (the number of integers that are about to be entered). We assign
the current maximum max an initial neutral value, for example -10000000000000 (or int.MinValue).
Using a for loop that is iterated n-1 times, we read one integer num on each iteration. If the read
number num is higher than the current maximum max, we assign the value of the num to the max
variable. Finally, in max we must have stored the biggest number. We print the number on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#4.

Problem: Min Number

Write a program that inputs n integers (n > 0) and finds the min number among them (the smallest
number). First enter the number of integers n, then n numbers additionally, one per line.

Video: Smallest Number

Watch this video lesson to learn how to find the smallest number among a sequence of number:
https://youtu.be/IHuz-mXbhzg.

https://youtu.be/KErfOdOuezE
https://judge.softuni.org/Contests/Practice/Index/510#4
https://youtu.be/IHuz-mXbhzg

196 Programming Basics with C#

Sample Input and Output

Input Output

Input Output

Input Output

Input Output

1
50

50
 2
 100
 99

99

3
-10
20
-30

-30

4
45
-20
7
99

-20

Hints and Guidelines

The problem is completely identical to the previous one, except this time we will start with another
neutral starting value.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#5.

Problem: Left and Right Sum

Write a program that converts 2 * n integers and checks whether the sum of the first n integers (left
sum) equals the sum of the second n numbers (right sum). In case the sums are equal, print "Yes" +
the sum, otherwise print "No" + the difference. The difference is calculated as a positive number (by
absolute value). The format of the output must be identical to the one in the examples below.

Sample Input and Output

Input Output Input Output

2
10
90
60
40

Yes, sum = 100

2
90
9
50
50

No, diff = 1

Video: Left and Right Sum

Watch this video lesson to learn how to calculate the left and the right sum and their difference:
https://youtu.be/s_uAuqTnC8w.

https://judge.softuni.org/Contests/Practice/Index/510#5
https://youtu.be/s_uAuqTnC8w

Chapter 5.1. Loops (Repetitions) 197

Hints and Guidelines

We will first input the number n, after that the first n numbers (left half) and sum them up. We will
then proceed with inputting more n numbers (the right half) and sum them up. We calculate the
difference between the sums by absolute value: Math.Abs(leftSum - rightSum). If the difference
is 0, print "Yes" + the sum, otherwise print "No" + the difference.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#6.

Problem: Even / Odd Sum

Write a program that inputs n integers and checks whether the sum of the numbers on even positions
is equal to the sum of the numbers on odd positions. In case the sums are equal, print "Yes" + the
sum, otherwise, print "No" + the difference. The difference is calculated by absolute value. The format
of the output must be identical to the examples below.

Sample Input and Output

Input Output Input Output Input Output

4
10
50
60
20

Yes
Sum = 70

4
3
5
1
-2

 No
 Diff = 1

3
5
8
1

 No
 Diff = 2

Video: Even / Odd Sum

Watch this video to learn how to sum the element at even and odd positions and how to calculate
their equality or difference: https://youtu.be/79QsS7FI2qg.

https://judge.softuni.org/Contests/Practice/Index/510#6
https://youtu.be/79QsS7FI2qg

198 Programming Basics with C#

Hints and Guidelines

We input the numbers one by one and calculate the two sums (of the numbers on even positions and
the numbers on odd positions). Identically to the previous problem, we calculate the absolute value
of the difference and print the result ("Yes" + the sum in case of difference of 0 or "No" + the
difference in any other case).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#7.

Problem: Sum of Vowels

Write a program that inputs text (string), calculates and prints the sum of the values of vowels
according to the table below:

a e i o u

1 2 3 4 5

Sample Input and Output

Input Output Comments Input Output Output

hello 6 e+o = 2+4 = 6 bamboo 9 a+o+o = 1+4+4 = 9

hi 3 (i = 3) beer 4 e+e = 2+2 = 4

Video: Sum of Vowels

Watch this video lesson to learn how to sum the vowels in a text: https://youtu.be/9hi9G3vRA0U.

https://judge.softuni.org/Contests/Practice/Index/510#7
https://youtu.be/9hi9G3vRA0U

Chapter 5.1. Loops (Repetitions) 199

Hints and Guidelines

We read the input text s, null the sum and run a loop from 0 to s.Length-1 (text length -1). We
check each letter s[i] and verify if it is a vowel, and accordingly, add its value to the sum.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#8.

Problem: Element Equal to the Sum of the Rest

Write a program that inputs n integers and checks whether among them there is a number equal to
the sum of all the rest. If there is such an element, print "Yes" + its value, otherwise – "No" + the
difference between the largest element and the sum of the rest (by absolute value).

Sample Input and Output

Input Output Comments Input Output Comments

7
3
4
1
1
2
12
1

Yes
Sum = 12

3 + 4 + 1 + 2 +
1 + 1 = 12

 3
 1
 1
 10

 No
 Diff = 8

|10 – (1 + 1)| = 8

Input Output Input Output Input Output

3
1
1
1

No
Diff = 1

 3
 5
 5
 1

 No
 Diff = 1

 4
 6
 1
 2
 3

 Yes
 Sum = 6

https://judge.softuni.org/Contests/Practice/Index/510#8

200 Programming Basics with C#

Hints and Guidelines

We must calculate the sum of all elements, find the largest of them and check the condition.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#9.

Problem: Even / Odd Positions

Write a program that reads n numbers and calculates the sum, the min and max values of the numbers
on even and odd positions (counted from 1). If there is no min / max element, print "No".

Sample Input and Output

Input Output Input Output Input Output

6
2
3
5
4
2
1

OddSum=9,
OddMin=2,
OddMax=5,
EvenSum=8,
EvenMin=1,
EvenMax=4

 2
 1.5
 -2.5

OddSum=1.5,
OddMin=1.5,
OddMax=1.5,
EvenSum=-2.5,
EvenMin=-2.5,
EvenMax=-2.5

 1
 1

OddSum=1,
OddMin=1,
OddMax=1,
EvenSum=0,
EvenMin=No,
EvenMax=No

Input Output Input Output Input Output

 3
-1
-2
-3

OddSum=-4,
OddMin=-3,
OddMax=-1,
EvenSum=-2,
EvenMin=-2,
EvenMax=-2

 1
 -5

OddSum=-5,
OddMin=-5,
OddMax=-5,
EvenSum=0,
EvenMin=No,
EvenMax=No

 5
 3
 -2
 8
 11
 -3

OddSum=8,
OddMin=-3,
OddMax=8,
EvenSum=9,
EvenMin=-2,
EvenMax=11

Hints and Guidelines

The task combines some of the previous tasks: finding the min and max value and sum, as well as
processing of elements on even and odd positions. Check them out.

In the current task it is better to work with fractions (not integers). The sum, the min and the max
value will also be fractions. We must use a neutral starting value upon finding the min/max value, for
example 1000000000.0 or -1000000000.0. If the end result is the neutral value, we will print “No”.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#10.

Problem: Equal Pairs

There are 2 * n numbers. The first and the second number form a pair, the third and the fourth number
also, and so on. Each pair has a value – the sum of its numbers. Write a program that checks if all pairs
have equal value.

In case the value is the same, print "Yes, value=…" + the value, otherwise, print the maximum
difference between two neighboring pairs in format: "No, maxdiff=…" + the maximum difference.

The input consists of the number n, followed by 2*n integers, all of them one per line.

https://judge.softuni.org/Contests/Practice/Index/510#9
https://judge.softuni.org/Contests/Practice/Index/510#10

Chapter 5.1. Loops (Repetitions) 201

Sample Input and Output

Input Output Input Output Input Output

3
1
2
0
3
4
-1

Yes, value=3
2
1
2
2
2

No, maxdiff=1
2
-1
2
0
-1

No, maxdiff=2

Comments Comments Comments

values = {3, 3, 3}
equal values

values = {3, 4}
differences = {1}

max difference = 1

values = {2, 4, 4, 0}
differences = {2, 0, 4}

max difference = 4

Input Output Input Output Input Output

 1
 5
 5

Yes, value=10

2
-1
0
0
-1

Yes, value=-1

4
1
1
3
1
2
2
0
0

No, maxdiff=4

Comments

values = {10}
one value

equal values

Hints and Guidelines

We read the input numbers in pairs. For each pair we calculate its sum. While reading the input pairs,
for each pair except the first one, we must calculate the difference compared to the previous one. In
order to do that, we need to store as a separate variable the sum of the previous pair. Finally, we find
the largest difference between two pairs. If it is 0, print “Yes” + the value, otherwise – “No” + the
difference.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/510#11.

Lab: Turtle Graphics GUI Application
In the current chapter we learned about loops as a programming construction that allows to repeat a
particular action or a group of actions multiple times. Now let's play with them. In order to do that,
we will draw some figures that will consist of a large number of repeating graphical elements, but this
time we will not do it on the console, but in a graphical environment using "turtle graphics". It will be
interesting. And it is not hard at all. Try it!

Video: Turtle Graphics

Watch the video to learn about turtle graphics and how to draw figures by moving and rotating the
turtle in a Windows Forms GUI application: https://youtu.be/WwSjMHo0Fx4.

What Shall We Build?

The purpose of the following exercise is to play with a "move and rotate" drawing library, also known
as "turtle graphics". We will build a graphical application (GUI App) in which we will draw various

https://judge.softuni.org/Contests/Practice/Index/510#11
https://youtu.be/WwSjMHo0Fx4

202 Programming Basics with C#

figures by moving our "turtle" across the screen via operations like "move 100 positions ahead", "turn
30 degrees to the right", "move 50 more positions ahead". The app will look approximately like this:

Turtle Graphics – Concepts

Let's first get familiar with the concept of drawing "Turtle Graphics". Take a look at the following
sources:

• Definition of "turtle graphics": http://c2.com/cgi/wiki?TurtleGraphics

• Article on "turtle graphics" in Wikipedia: https://en.wikipedia.org/wiki/Turtle_graphics

• Interactive online tool for drawing with a turtle:
https://blockly-games.appspot.com/turtle

Creating a New C# Project

We will start by creating a new C# Windows Forms Project:

http://c2.com/cgi/wiki?TurtleGraphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://blockly-games.appspot.com/turtle

Chapter 5.1. Loops (Repetitions) 203

Installing Turtle Graphics NuGet Package

Install the NuGet package "Nakov.TurtleGraphics" to

your new Windows Forms project. From Visual Studio
you can add external libraries(packages) to an existing C#
project. They add up additional functionality to our
applications. The official repository for C# libraries is
maintained by Microsoft and is called NuGet
(http://www.nuget.org).

Right-click the Solution Explorer project and select
[Manage NuGet Packages…] like it is shown on the
screenshot.

A NuGet package search and installation window will
open. Let's search for packages by keyword nakov. A few
packages will be found. Select Nakov.TurtleGraphics.
Click [Install] to install it to your C# project:

The external library Nakov.TurtleGraphics is already included in our C# project. It defines Turtle

class that represents a drawing
turtle. In order to use it, add
(Form1.cs) in the C# code for our
form. Add the following code at the
top of the file:

Adding the Buttons

Now we need to add three buttons
into the form and change their
names and properties as it is shown
on the screenshot.

http://www.nuget.org/

204 Programming Basics with C#

Implementing the [Draw] Button

Double-click the [Draw] button in order to add the code that will be executed upon its pressing. Write
the following code:

This code moves and rotates the turtle that is initially in the center of the screen (in the middle of the
form) and draws an equilateral triangle. You can edit it and play with it.

Testing the Application

Start the application by pressing [Ctrl+F5]. Test if it works (press the [Draw] button a few times):

Adding Complexity to the Turtle Drawing Code

Now you can modify the turtle code and make it more complex:

Chapter 5.1. Loops (Repetitions) 205

Start the application again by pressing [Ctrl+F5]. Test whether the new turtle program works:

Now our turtle draws more complex figures via a nice animated motion.

Implementing the [Reset] Button

Now let's write the code for the other two buttons. The purpose of the [Reset] button is to delete the
graphics and to start drawing from the beginning:

Implementing the [Show / Hide Turtle] Buttons

The purpose of the [Show / Hide Turtle] button is to show or hide the turtle:

206 Programming Basics with C#

Once again, start the application by [Ctrl+F5] and test whether it works correctly.

Exercises: Turtle Graphics
Now, it is your time to draw a few figures with the turtle, using sequences of moves and rotations.
Add a new additional button for drawing each of the figures, shown below.

Problem: * Draw a Hexagon with the
Turtle

Add a [Hexagon] button that draws a regular hexagon.
It may look like at the screenshot.

Hint:

Repeat 6 times the following in a loop:

• 60 degrees rotation.

• Forward step of 100.

Problem: * Draw a Star with the Turtle

Add a [Star] button that draws a star with 5 beams
(pentagram) in green color, as on the screenshot.

Hints:

Change the color to green:

Turtle.PenColor = Color.Green.

Repeat 5 times the following in a loop:

• Forward step of 200.

• 144 degrees rotation.

Chapter 5.1. Loops (Repetitions) 207

Problem: * Draw a Spiral with the Turtle

Add a [Spiral] button that draws a spiral with 20 beams,
as on the figure.

Hints:

• Draw in a loop by moving ahead and rotating.

• In each step, decrease gradually the length of the
forward step and rotate at 60 degrees.

Can you solve the same problem differently?

Problem: * Draw a Sun with the Turtle

Add a [Sun] button that draws a sun with 36 beams, as
on the figure.

Hints:

• The entire circle consists of 360 degrees = 36 * 10
degrees

• Think about how many times you will move the
turtle forward, then rotate, then move the turtle
back, etc.

Can you solve the same problem differently?

Problem: * Draw a Spiral Triangle
with the Turtle

Add a [Triangle] button that draws three triangles
with 22 beams each, as on the figure.

Hint:

Draw in a loop by moving forward and rotating.
In each step, increase the length of the forward
step with 10 and rotate 120 degrees. Repeat 3
times for the three triangles.

If you have a problem with the above exercises,
you can ask for help in the SoftUni official
discussion forum (http://forum.softuni.org) or in
the SoftUni official Facebook page (https://fb.com/softuni.org).

http://forum.softuni.org/
https://fb.com/softuni.org

https://softuni.org

Chapter 5.2. Loops – Exam Problems
In the previous chapter we learned how to run a block of commands more than once. That's why we
introduced a for loop and reviewed its main use cases. The purpose of this chapter is to improve our
knowledge by solving some more complex problems with loops, used for exams. For some of them
we will show examples of detailed solutions, and for others we will leave only guidance.

For Loops – Quick Review
Before we start working, it will be good to review again the for loop construction:

For loops consist of:

• Initialization block in which the variable-counter is declared (var i) and its initial value is set.

• Repeat condition (i <= 10), executing once, before each iteration of the loop.

• Restarting the counter (i++) – this code is executed after each iteration.

• Body of the loop – contains random block of source code.

Now, after the review, let's solve a few problems with loops from exams in SoftUni.

Problem: Histogram
We have n integer numbers within the range of [1 … 1000]. Some percent of them p1 are under 200,
another percent p2 are from 200 to 399, percent p3 are from 400 to 599, percent p4 are from 600
to 799 and the rest p5 percent are from 800 upwards. Write a program that calculates and prints the
percentages p1, p2, p3, p4 and p5.

Example: we have n = 20 numbers: 53, 7, 56, 180, 450, 920, 12, 7, 150, 250, 680, 2, 600, 200, 800,
799, 199, 46, 128, 65. We get the following distribution and visualization:

Group Numbers Numbers Count Percent

< 200
53, 7, 56, 180, 12, 7,
150, 2, 199, 46, 128, 65

 12 p1 = 12 / 20 * 100 = 60.00%

200… 399 250, 200 2 p2 = 2 / 20 * 100 = 10.00%

400… 599 450 1 p3 = 1 / 20 * 100 = 5.00%

600… 799 680, 600, 799 3 p4 = 3 / 20 * 100 = 15.00%

≥ 800 920, 800 2 p5 = 2 / 20 * 100 = 10.00%

210 Programming Basics with C#

Input Data

On the first line of the input there is an integer n (1 ≤ n ≤ 1000) that represents the count of lines of
numbers that will be passed. On each of the following n lines we have one integer within range of [1
… 1000] – numbers, on which we have to calculate the histogram.

Output Data

Print on the console a histogram that consists of 5 lines, each of them containing a number within the
range of [0% … 100%], formatted up to two digits after the decimal point (for example 25.00%,
66.67%, 57.14%).

Sample Input and Output

Input Output Input Output

9
367
99
200
799
999
333
555
111
9

33.33%
33.33%
11.11%
11.11%
11.11%

 14
 53
 7
 56
 180
 450
 920
 12
 7
 150
 250
 680
 2
 600
 200

57.14%
14.29%
7.14%
14.29%
7.14%

Input Output Input Output Input Output

 3
 1
 2
 999

 66.67%
 0.00%
 0.00%
 0.00%
 33.33%

 4
 53
 7
 56
 999

 75.00%
 0.00%
 0.00%
 0.00%
 25.00%

 7
 800
 801
 250
 199
 399
 599
 799

 14.29%
 28.57%
 14.29%
 14.29%
 28.57%

Hints and Guidelines

We can split the program that solves this problem into three parts:

• Reading the input data – in the current problem this includes reading of the number n, followed
by n count of integers, each on a single line.

• Processing the input data – in this case that means allocating the numbers into groups and
calculating the percentage breakdown by groups.

• Printing the output – printing the histogram on the console in the specified format.

Chapter 5.2. Loops – Exam Problems 211

Before we proceed, we will make a small deviation from the current topic, namely, we will briefly
mention that in programming every variable has a certain data type. In this problem we will use the
numeral types int for integers and double for real numbers. Often, to make it easier, programmers
miss the explicit specification of the type by replacing it with the keyword var. For better

understanding we will write the type upon declaring the variables.

We will now proceed with the implementation of each of the above points.

Reading the Input Data

Before we proceed to reading the input data, we must declare the variables, in which we will store it.
This means choosing the right data type and appropriate names.

In the variable n we will store the count of numbers that we will read from the console. We choose

int type, because n is an integer within the range from 1 to 1000. For the variables in which we will
store the percentages, we choose double type, because they are not expected to always be integers.
Additionally, we declare the variables cntP1, cntP2 etc., in which we will keep the count of the
numbers from the respective group, and we choose again int type.

After we have declared the needed variables, we can read the number n from the console:

Distributing Numbers in Groups

To read and distribute each number in its corresponding group, we will use a for loop from 0 to n
(count of numbers). Every iteration of the loop will read and distribute one single number
(currentNumber) into its corresponding group. In order to determine if a number belongs to a group,
we perform a check in its respective range. If the above is true, we increase the count of the numbers
in the corresponding group (cntP1, cntP2 etc.) by 1.

212 Programming Basics with C#

Calculating Percentages

After we have determined how many numbers there are in each group, we can move on to calculating
the percentages, which is the main purpose of the problem. For this we will use the following formula:

(group percentage) = (count of numbers in group) * 100 / (count of all numbers)

This formula in the program code looks like this:

If we divide by 100 (int number type) instead of 100.0 (double number type), we will perform the
so-called integer division and the variable will save only the whole part of the division, and this is not
the result we want. For example: 5 / 2 = 2, but 5 / 2.0 = 2.5. Considering this, the formula for the
first variable will look like this:

To make it even clearer, let's take a look at the example on the right.

In this case n = 3. For the loop we have:

• i = 0 – we read the number 1, which is less than 200 and falls into
the first group (p1) and increase the group count (cntP1) by 1.

• i = 1 – we read the number 2, which again falls into the first group
(p1) and increase its count (cntP1) again by 1.

• i = 2 – we read the number 999, which falls into the last group (p5),
because its bigger than 800, and increase the count of the group (cntP5) with 1.

After reading the numbers in group p1 we have 2 numbers, and in p5 we have 1 number. We have
no numbers in the other groups. By applying the above formula, we calculate the percentages of each
group. If we multiply in the formula by 100, instead of 100.0 we will obtain for group p1 66%, and

for group p5 – 33% (without fractional part).

Printing the Output

We only have to print the results output. The description says that the percentages must be with
precision of two points after the decimal point. To achieve this, write “:f2” after the placeholder:

Input Output

3
1
2
999

66.67%
0.00%
0.00%
0.00%
33.33%

Chapter 5.2. Loops – Exam Problems 213

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#0.

Problem: Smart Lilly
Lilly is N years old. For each birthday she receives a present. For each odd birthday (1, 3, 5, …, n) she
receives toys, and for each even birthday (2, 4, 6, …, n) she receives money. For her second birthday
she received 10.00 USD, and the amount is increased by 10.00 USD for each following even birthday
(2 -> 10, 4 -> 20, 6 -> 30 etc.). Over the years Lilly has secretly saved her money. Lilly's brother, in
the years when she received money, took 1.00 USD from each of the amounts. Lilly has sold the toys,
received over the years, each one for P USD and added the sum to the amount of saved money. With
the money she wanted to buy a washing machine for X USD.

Write a program that calculates how much money she has saved and if it is enough to buy a washing
machine.

Input Data

We read from the console 3 numbers, each on a separate line:

• Lilly's age – integer in the range of [1 … 77].

• Price of the washing machine – number in the range of [1.00 … 10 000.00].

• Unit price of each toy – integer in the range of [0 … 40].

Output Data

Print on the console one single line:

• If Lilly's money is enough:

o “Yes! {N}” – where N is the remaining money after the purchase

• If the money is not enough:

o “No! {M}” – where M is the insufficiency amount

o Numbers N and M must be formatted up to the second digit after the decimal point.

Sample Input and Output

Input Output Comments

 21
 1570.98
 3

No! 997.98 She has saved 550 USD. She has sold 11 toys 3 USD each = 33 USD.
Her brother has taken for 10 years 1 USD each year = 10 USD.
Remaining amount: 550 + 33 - 10 = 573 USD.
573 < 1570.98: she did not manage to buy a washing machine. The
insufficiency amount is 1570.98 - 573 = 997.98 USD.

https://judge.softuni.org/Contests/Practice/Index/511#0

214 Programming Basics with C#

Input Output Comments

 10
 170.00
 6

Yes! 5.00 For the first birthday she gets a toy; 2nd -> 10 USD; 3rd -> toy; 4th -
> 10 + 10 = 20 USD; 5th -> toy; 6th -> 20 + 10 = 30 USD; 7th ->
toy; 8th -> 30 + 10 = 40 USD; 9th -> toy; 10th -> 40 + 10 = 50 USD.
She has saved -> 10 + 20 + 30 + 40 + 50 = 150 USD. She sold 5 toys
for 6 USD each = 30 USD. Her brother took 1 USD 5 times = 5 USD.
Remaining amount -> 150 + 30 - 5 = 175 USD. 175 >= 170 (price of
the washing machine): she managed to buy it and is left with 175 -
170 = 5 USD.

Hints and Guidelines

The solution of this problem, like the previous one, can also be split into three parts – reading the
input data, processing them and printing the output.

Reading the Input Data

We start again by selecting the appropriate data types and names of variables. For the Lilly's years
(age) and the unit price of the toy (presentPrice) the description requires integers. That's why we
will use int type. For the price of the washing machine (priceOfWashingMachine) we know that it
is real number and we choose double. Of course, we can skip the explicit specification of type, by

using var. In the above code we declare and initialize (assign value to) the variables.

Creating Helper Variables

To solve the problem, we will need several helper variables – for the count of toys (numberOf
Toys), for the saved money (savedMoney) and for the money received on each birthday (money
ForBirthday). The initial value of moneyForBirthday is 10, because the description says that the
first sum, which Lilly gets, is 10 USD:

Calculating Savings

Chapter 5.2. Loops – Exam Problems 215

With a for loop we iterate through every Lilly's birthday. When the leading variable is an even
number, that means that Lilly has received money and we add this money to her total savings. At the
same time, we subtract 1 USD – the money that her brother took. Then we increase the value of the
variable moneyForBirthday, i.e. we increase by 10 the sum that she will receive on her next birthday.

On the contrary, when the leading variable is an odd number, we increase the count of toys. We do
the parity check by division with remainder (%) by 2 – when the remainder is 0, the figure is even, and
in case of remainder 1 – it is odd.

We also add the money from the sold toys to Lilly's savings.

Formatting and Printing the Output

Finally, we need to print the obtained results, considering the formatting specified in the description,
i.e. sum needs to be rounded up to 2 symbols after the decimal point:

In this case we choose to use the conditional operator (?:) (also called ternary operator), because the
record is shorter. Its syntax is as follows: operand1 ? operand2 : operand3. The first operand
needs to be of bool type (i.e. to return true/false). If operand1 returns true, operand2 will be
executed, and if it returns false – operand3 will be executed. In our case we check if the money

saved by Lilly is enough for a washing machine. If it is more than or equal to the price of a washing
machine, the check savedMoney >= priceOfWashingMachine will return true and will print “Yes!
…”, and if it is less – the result will be false and “No! …” will be printed. Of course, instead of
conditional operand, we can use if checks.

Learn more about the conditional operator from: https://www.dotnetperls.com/ternary, https://
msdn.microsoft.com/en-us/library/ty67wk28.aspx.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#1.

Problem: Back to the Past
Ivan is 18 years old and receives an inheritance that consists of X money and a time machine. He
decides to return to 1800 but does not know if the money will be enough to live without working.
Write a program that calculates if Ivan will have enough money to not have to work until a particular
year (inclusive). Assuming that for every even (1800, 1802, etc.) year he will spend 12 000 dollars.
For every odd one (1801, 1803, etc.) he will spend 12 000 + 50 * [the age he will have reached in
the given year].

Input Data

The input is read from the console and contains exactly 2 lines:

• Inherited money – a real number in the range [1.00 … 1 000 000.00].

• Year, until which he has to live in the past (inclusive) – integer number in the range [1801 …
1900].

https://www.dotnetperls.com/ternary
https://msdn.microsoft.com/en-us/library/ty67wk28.aspx
https://msdn.microsoft.com/en-us/library/ty67wk28.aspx
https://judge.softuni.org/Contests/Practice/Index/511#1

216 Programming Basics with C#

Output Data

Print on the console 1 line. The sum must be formatted up to the two symbols after the decimal point:

• If money is enough:

o "Yes! He will live a carefree life and will have {N} dollars left." – where N is the money that
will remain.

• If money is NOT enough:

o "He will need {М} dollars to survive." – where M is the sum that is NOT enough.

Sample Input and Output

Input Output Explanations

50000
1802

Yes! He will live a carefree
life and will have 13050.00
dollars left.

1800 → even
 → Spends 12000 dollars
 → Remain 50000 – 12000 = 38000
1801 → odd
 → Spends 12000 + 19*50 = 12950 dollars
 → Remaining 38000 – 12950 = 25050
1802 → even
 → Spends 12000 dollars
 → Remaining 25050 – 12000 = 13050

100000.15
1808

He will need 12399.85
dollars to survive.

1800 → even
 → Remaining 100000.15 – 12000 = 88000.15
1801 → odd
 → Remaining 88000.15 – 12950 = 75050.15
…
1808 → odd → -399.85 - 12000 = -12399.85
12399.85 is not enough

Hints and Guidelines

Let’s solve the problem step by step: read the input data, iterate over the years, check the heritage
and print the output.

Reading the Input Data

The method to solve this task is no different than the previous ones, so we start declaring and
initializing the necessary variables:

The requirements say that Ivan is 18 years old, so when declaring the variable years we assign it an
initial value of 18. We read the other variables from the console.

Iterating through the Years

Using a for loop, we will iterate through all years. We start from 1800 – the year in that Ivan returns,
and we reach the year until which he must live in the past. We check in the loop if the current year is

Chapter 5.2. Loops – Exam Problems 217

even or odd. We do this by division with remainder (%) by 2. If the year is even, we subtract from
heritage 12000, and if is odd, we subtract from heritage 12000 + 50 * (years).

Checking for Enough Heritage and Printing the Output

Finally, we need to print out the results by checking if the heritage is enough to live without working

or not. If the heritage is a positive number, we print: “Yes! He will live a carefree life
and will have {N} dollars left.”, and if it is a negative number: “He will need {М} dollars
to survive.”. Do not forget to format the sum up to the second digit after the decimal point.

Hint: Consider using the Math.Abs(…) function when printing the output, if the heritage is not
enough.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#2.

Problem: Hospital
For a certain period of time, patients arrive at the hospital every day for an examination. It has initially
7 doctors. Each doctor can treat only one patient per day, but sometimes there is a shortage of
doctors, so the remaining patients are sent to other hospitals. Every third day the hospital makes
calculations and if the count of untreated patients is greater than the count of treated ones, another
doctor is appointed. Appointment takes place before the daily patient acceptance begins.

Write a program, that calculates for a given period of time, the count of treated and untreated
patients.

Input Data

Input is read from the console and contains:

• On the first line – the period, for which you need to make calculations. Integer in the range of
[1 … 1000].

• On the next lines (equal to the count of days) – count of the patients, who arrive for
treatment for the current day. Integer in the range of [0 … 10 000].

Output Data

Print on the console 2 lines:

https://judge.softuni.org/Contests/Practice/Index/511#2

218 Programming Basics with C#

• On the first line: “Treated patients: {count of treated patients}.”

• On the second line: “Untreated patients: {count of untreated patients}.”

Sample Input and Output

Input Output Comments

4
7
27
9
1

Treated patients: 23.
Untreated patients: 21.

Day 1: 7 treated and 0 untreated patients for the day
Day 2: 7 treated and 20 untreated patients for the day
Day 3: By this moment the treated patients are 14,
and untreated ones – 20 –> New doctor is appointed.
–> 8 treated and 1 untreated patients for the day
Day 4: 1 treated and 0 untreated patients for the day
Total: 23 treated and 21 untreated patients.

Input Output Input Output

3
7
7
7

Treated patients: 21.
Untreated patients:

0.

6
25
25
25
25
25
2

Treated patients: 40.
Untreated patients: 87.

Hints and Guidelines

Let’s solve the problem step by step: read the input data, calculate the number treated and untreated
patients and print the output.

Reading the Input Data

Again, we begin by declaring and initializing the required variables:

The period in which we have to make the calculations is read from the console and saved in the
period variable. We will also need some helper variables: the number of treated patients
(treatedPatients), the number of untreated patients (untreatedPatients) and the number of
doctors (countOfDoctors), which is initially 7.

Calculating the Treated and Untreated Patients

Chapter 5.2. Loops – Exam Problems 219

With the help of a for loop we iterate through all days in the given period (period). For each day,
we read from the console the number of the patients (currentPatients). Increasing doctors by
requirements can be done every third day, BUT only if the count of untreated patients is greater than
the count of treated ones. For this purpose, we check if the day is third one – with the arithmetical
operator for division with remainder (%): day % 3 == 0.

For example:

• If the day is third one, the remainder of the division by 3 will be 0 (3 % 3 = 0) and the check
day % 3 == 0 will return true.

• If the day is second one, the remainder of the division by 3 will be 2 (2 % 3 = 2) and the check
will return false.

• If the day is forth one, the remainder of the division will be 1 (4 % 3 = 1) and the check will
return again false.

If day % 3 == 0 returns true, the system will check whether the count of untreated patients is
greater than the count of treated ones: untreatedPatients > treatedPatients. If the result is
again true, then the count of doctors will be increased (countOfDoctors).

Then we check if the count of the patients for the day (currentPatients) is greater than the count
of doctors (countOfDoctors). If the count of the patients is greater:

• Increase the value of the variable treatedPatients by the count of doctors (countOf
Doctors).

• Increase the value of the variable untreatеdPatients by the count of the remaining patients,
which we calculate by subtracting the count of doctors from the count of patients
(currentPatients - countOfDoctors).

If the count of patients is not greater, increase only the variable treatedPatients with the count of
patients for the day (currentPatients).

Finally, we need to print the count of treated and count of untreated patients.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#3.

https://judge.softuni.org/Contests/Practice/Index/511#3

220 Programming Basics with C#

Problem: Division without Remainder
We have n integers in the range of [1 ... 1000]. Among them, some percentage p1 are divisible without
remainder by 2, percentage p2 are divisible without remainder by 3, percentage p3 are divisible
without remainder by 4. Write a program that calculates and prints the p1, p2 and p3 percentages.
Example: We have n = 10 numbers: 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. We get the
following distribution and visualization:

Division without
remainder by

Numbers Count Percent

2 680, 2, 600, 200, 800, 46, 128 7 p1 = (7 / 10) * 100 = 70.00%

3 600 1 p2 = (1 / 10) * 100 = 10.00%

4 680, 600, 200, 800, 128 5 p3 = (5 / 10) * 100 = 50.00%

Input Data

On the first line of the input is the integer n (1 ≤ n ≤ 1000) – count of numbers. On each of the next
n lines we have one integer in the range of [1 … 1000] – numbers that needs to be checked for
division.

Output Data

Print on the console 3 lines, each of them containing a percentage between 0% and 100%, two digits
after the decimal point, for example 25.00%, 66.67%, 57.14%.

• On the first line – percentage of the numbers that are divisible by 2.

• On the second line – percentage of the numbers that are divisible by 3.

• On the third line – percentage of the numbers that are divisible by 4.

Sample Input and Output

Input Output Input Output Input Output

10
680
2
600
200
800
799
199
46
128
65

70.00%
10.00%
50.00%

 3
3
6
9

33.33%
100.00%
0.00%

 1
12

100.00%
100.00%
100.00%

Hints and Guidelines

For the current and for the next problem you will need to write by yourself the program code,
following the given guidelines.

Chapter 5.2. Loops – Exam Problems 221

The program that solves the current problem is similar to the one from the Histogram problem, which
we reviewed earlier. That's why we can start declaring the required variables. Sample names of
variables may be: n – count of numbers (that we need to read from the console) and divisibleBy2,
divisibleBy3, divisibleBy4 – helper variables that keeps the count of the numbers in the

corresponding group.

To read and allocate each number to its corresponding group we have to rotate for loop from 0 to n
(count of numbers). Each iteration of the loop should read and allocate one single number. The
difference here is that a single number can get into several groups at once, so we have to make three
separate if checks for each number – respectively check whether it is divided by 2, 3 and 4 (using

if-else statement in this case will not work, because after finding a match it interrupts further
checking of conditions) and increase the value of the variable that keeps the count of numbers in the
corresponding group.

Finally, you need to print the obtained results, by following the specified format.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#4.

Problem: Logistics
You are responsible for the logistics various types of cargo. Depending on the weight of each cargo,
you need a different vehicle, and this will cost a different price per ton:

• Up to 3 tons – a minibus (200 USD per ton).

• From over 3 and up to 11 tons – truck (175 USD per ton).

• Over 11 tons – train (120 USD per ton).

Your task is to calculate the average price per tone of the cargo, and also what percentage of the
cargo is transported in each vehicle.

Input Data

From the console we must read a sequence of numbers, each on a separate line:

• First line: count of cargo for transportation – integer in the range of [1 … 1000].

• On the next lines we pass the tonnage of the current cargo – integer in the range of [1 … 1000].

Output Data

Print on the console 4 lines, as follows:

• Line #1 – the average price per tone of the cargo (rounded up to the second digit after the
decimal point).

• Line #2 – percentage of the cargo, carried by minibus (between 0.00% and 100.00%, rounded
up to the second digit after the decimal point).

• Line #3 – percentage of the cargo, carried by truck (between 0.00% and 100.00%).

• Line #4 – percentage of the cargo, carried by train (between 0.00% and 100.00%).

Sample Input and Output

The example below demonstrates and explains the computation process:

https://judge.softuni.org/Contests/Practice/Index/511#4

222 Programming Basics with C#

Input Output Explanations

4
1
5
16
3

143.80
16.00%
20.00%
64.00%

By minibus you transport two of the cargo 1 + 3, total of 4 tons.

By truck you transport one of the cargo: 5 tons.

By train you transport one of the cargo: 16 tons.

Sum of all cargo is: 1 + 5 + 16 + 3 = 25 tons.

Percentage of the cargo by minibus: 4/25*100 = 16.00%

Percentage of the cargo by truck: 5/25*100 = 20.00%

Percentage of the cargo by train: 16/25*100 = 64.00%

Average price per ton of carried cargo: (4 * 200 + 5 * 175 + 16 * 120) / 25 =

143.80

Hints and Guidelines

First, we will read the weight of each
cargo and sum how much tons are being
transported by minibus, truck and train,
and we will calculate the total tons of
the transported cargo. We will calculate
prices for each type of transportation
according to the transported tons and
the total price. Finally, we will calculate
and print the total average price per ton
and how much of the cargo is being transported by different types of transport in percentages.

We declare the needed variables, for example: countOfLoads – count of the cargos for transpor-
tation (we read them from the console), sumOfTons – sum of the tonnage of all cargos,
microbusTons, truckTons, trainTons – variables that keeps the sum of the cargo tonnage,

transported by minibus, truck and train.

We still need a for loop from 0 to countOfLoads-1, to iterate through all cargo types. For each
cargo we read its weight (in tons) from the console and save it in a variable, for example tons. We

add to the tonnage the sum of all cargo (sumOfTons) the weight of the current cargo (tons). Once
we have read the weight of the current cargo, we need to determine which vehicle type will be used
(minibus, truck or train). For this we will need if-else statements:

• If the value of the variable tons is less than 3, increase the value of microbusTons by the value
of tons: microbusTons += tons;

• Otherwise, if the tons are less than 11, increase truckTons by tons.

• If tons are more than 11, increase trainTons by tons.

Before we print the output, we need to calculate the percentage of tons, transported by each vehicle
and the average price per ton. For the average price per ton we will declare one more helper variable
totalPrice, in which we will sum the total price of all transported cargo (by minibus, truck and train).

We will calculate an average price, by dividing totalPrice of sumOfTons. You need to calculate by
yourself the percentages of tons, transported by each vehicle, and print the results, keeping the format
specified in the description.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/511#5.

Input Output Input Output

5
2
10
20
1
7

149.38
7.50%
42.50%
50.00%

 4
53
7
56
999

120.35
0.00%
0.63%
99.37%

https://judge.softuni.org/Contests/Practice/Index/511#5

Chapter 6.1. Nested Loops
In the current chapter we will be looking at nested loops and how to use for loops to draw various
figures on the console, that contain symbols and signs, ordered in rows and columns on the console.
We will use single and nested loops (loops that stay in other loops), calculations and checks, in order
to print on the console simple and not so simple figures by specified sizes.

Video: Chapter Overview
Watch a video lesson to learn what we will learn in this chapter: https://youtu.be/sbmhyr1Yz7U.

Introduction to Nested Loops by Examples
In programming loops can be nested, which means that in a loop we can put another loop. This is an
example of nested for-loops, which are used to draw a square of n rows, each holding n times the

chars =-:

int n = int.Parse(Console.ReadLine());
for (int row = 1; row <= n; row++)
{
 for (int col = 1; col <= n; col++)
 {
 Console.Write("=-");
 }
 Console.WriteLine();
}

Run the above code example: https://repl.it/@nakov/nested-for-loops-draw-square-csharp.

If we run the above code and enter 5 as input, the output will be as follows:

5
=-=-=-=-=-
=-=-=-=-=-
=-=-=-=-=-
=-=-=-=-=-
=-=-=-=-=-

Using a combination of calculations, conditional statements and nested loops, we can implement more
complex logic. For example, we can draw a rhombus of stars as follows:

int n = 10;
for (int row = 1; row < n; row++)
{
 var spaces = Math.Abs(n / 2 - row);
 var stars = n/2 - spaces;
 for (int col = 1; col <= spaces; col++)
 Console.Write(" ");
 for (int col = 1; col <= stars; col++)
 Console.Write("* ");
 Console.WriteLine();
}

Run the above code example: https://repl.it/@nakov/nested-for-loops-draw-rhombus-csharp.

https://youtu.be/sbmhyr1Yz7U
https://repl.it/@nakov/nested-for-loops-draw-square-csharp
https://repl.it/@nakov/nested-for-loops-draw-rhombus-csharp

224 Programming Basics with C#

The above code will print on the console the following output:

 *
 * *
 * * *
 * * * *
* * * * *
 * * * *
 * * *
 * *
 *

Let's explain in greater detail how to use nested loops to implement more complex logic in our C#
programs.

Nested Loops – Concepts
A nested loop is a construction where in the body of one loop (outer one) stays another loop (inner
one). In each iteration of the outer loop, the whole inner loop is executed. This happens in the
following way:

• When nested loops start executing, the outer loop starts first: the controlling variable is
initialized and after a check for ending the loop the code in its body is executed.

• After that, the inner loop is executed. The controlling variables start position is initialized, a
check for ending the loop is made and the code in its body is executed.

• When reaching the specified value for ending the loop, the program goes back one step up and
continues executing the previous (outer) loop. The controlling variable of the outer loop changes
with one step, a check is made to see if the condition for ending the loop is met and a new
execution of the nested (inner) loop is started.

• This is repeated until the variable of the outer loop meets the condition to end the loop.

Video: Nested Loops

Watch this video to learn the concepts of nested loops: https://youtu.be/Sj49u6XlzXU.

Nested Loops – Examples

Here is an example that illustrates nested loops. The aim is again to print a rectangle made of n * n
stars, in which for each row a loop iterates from 1 to n, and for each column a nested loop is executed
from 1 to n:

If we enter 5 as input on the console, the above sample code will print the output shown on the right.

https://youtu.be/Sj49u6XlzXU

Chapter 6.1. Nested Loops 225

Let's look at the example above. After initializing the first (outer) loop, its body, which contains the
second (nested) loop starts executing. By itself it prints on one row n number of stars. After the inner
loop finishes executing at the first iteration of the outer one, the first loop will continue, i.e. it will
print an empty row on the console. After that, the variable of the first loop will be renewed and the
whole second loop will be executed again. The inner loop will execute as many times as the body of
the outer loop executes, in this case n times.

Example: Rectangle Made of 10 x 10 Stars

Print on the console a rectangle made out of 10 x 10 stars.

Video: Rectangle of 10 x 10 Stars

Watch this video lesson to learn how to print a rectangle of 10 x 10
stars on the console: https://youtu.be/XNsgT4yqw_s.

Hints and Guidelines

How does the example work? We initialize a loop with a variable i = 1, which increases with each
iteration of the loop, while it is less or equal to 10. This way the code in the body of the loop is
executed 10 times. In the body of the loop we print a new line on the console new string('*',
10), which creates a string of 10 stars.

The above solution uses a trick to avoid nesting loops: it prints 10 stars using the string constructor
(instead of printing a star 10 times in a nested loop). Another solution, using nested for-loops, might
look like this:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#0.

Example: Rectangle Made of N x N Stars

Write a program that enters a positive integer n and prints a rectangle made out of N x N stars:

Input Output Input Output Input Output

2
**
**

3

4

Input Output

(none)

https://youtu.be/XNsgT4yqw_s
https://judge.softuni.org/Contests/Practice/Index/512#0

226 Programming Basics with C#

Video: Rectangle of N x N Stars

Watch this video lesson to learn how to print a rectangle of N x N stars on the console using nested
for-loops: https://youtu.be/9sB4Z2TI1AE.

Hints and Guidelines

This is sample solution, which uses a single loop, holding a command to print n stars:

You may also use nested for-loops: outer loop 1..n for the rows and inner loop 1…n for the columns,
which prints a single star.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#1.

Examples: Square Made of Stars

Print on the console a square made of N x N stars (use a space between the stars, on the same line):

Input Output Input Output Input Output

2
* *
* *

3
* * *
* * *
* * *

4

* * * *
* * * *
* * * *
* * * *

Hints and Guidelines

The problem is similar to the last one. The difference here is that we need to figure out how to add a
whitespace after the stars so that there aren't any excess white spaces in the beginning or the end.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#2.

https://youtu.be/9sB4Z2TI1AE
https://judge.softuni.org/Contests/Practice/Index/512#1
https://judge.softuni.org/Contests/Practice/Index/512#2

Chapter 6.1. Nested Loops 227

Example: Triangle Made of Dollars

Write a program that takes an integer n and prints a triangle made of dollars of size n.

Input Output

Input Output

Input Output

2
$
$ $

3

$
$ $
$ $ $

4

$
$ $
$ $ $
$ $ $ $

Video: Triangle of Dollars

Watch this video to learn how to print a triangle of dollars on the console, using nested for-loops:
https://youtu.be/Pbfe1F0nMNE.

Hints and Guidelines

The problem is similar to those for drawing a rectangle and square. Once again, we will use nested
loops, but there is a catch here. The difference is that the number of columns that we need to print
depends on the row, on which we are and not on the input number n. From the example input and
output data we see that the count of dollars depends on which row we are on at the moment of the
printing, i.e. 1 dollar means first row, 3 dollars mean third row and so on. Let's see the following
example in detail. We see that the variable of the nested loop is connected with the variable of the
outer one. This way our program prints the desired triangle.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#3.

Example: Square Frame

Write a program that takes an integer n and draws on the console a square frame with a size of n * n.

Input Output Input Output Input Output

4

+ – - +
| – - |
| – - |
+ – - +

5

+ – - – +
| – - – |
| – - – |
| – - – |
+ – - – +

6

+ – - – - +
| – - – - |
| – - – - |
| – - – - |
| – - – - |
+ – - – - +

https://youtu.be/Pbfe1F0nMNE
https://judge.softuni.org/Contests/Practice/Index/512#3

228 Programming Basics with C#

Video: Square Frame

Watch this video lesson to learn how to print a square frame on the console using nested loops:
https://youtu.be/LS2uqvggfSA.

Hints and Guidelines

We can solve the problem in the following way:

• We read from the console the number n.

• We print the upper part: first a + sign, then n-2 times - and in the end a + sign.

• We print the middle part: we print n-2 rows, as we first print a | sign, then n-2 times - and in
the end again a | sign. We can do this with nested loops.

• We print the lower part: first a + sign, then n-2 times - and in the end a + sign.

Here is an example implementation of the above idea with nested loops:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#4.

https://youtu.be/LS2uqvggfSA
https://judge.softuni.org/Contests/Practice/Index/512#4

Chapter 6.1. Nested Loops 229

Exercises: Drawing Figures
Let's look at how to draw figures using nested loops with more complex logic, for which we need to
think more before coding.

Video: Chapter Summary

Watch this video to review what we learned in this chapter: https://youtu.be/tj4s3BOijO4.

What We Learned in This Chapter?

Before starting, let's review what we learned in this chapter.

We became acquainted with the new string constructor:

string printMe = new string('*', 5);

We learned to draw figures with nested for loops:

for (var r = 1; r <= 5; r++)
{
 Console.Write("*");
 for (var c = 1; c < 5; c++)
 Console.Write(" *");
 Console.WriteLine();
}

Problem: Rhombus Made of Stars

Write a program that takes a positive integer n and prints a rhombus made of stars with size n.

Input Output Input Output Input Output Input Output

1 *

2
 *
* *
 *

3

 *
 * *
* * *
 * *
 *

4

 *
 * *
 * * *
* * * *
 * * *
 * *
 *

Video: Rhombus of Stars

Watch this video lesson to learn how to print a rhombus of stars on the console using nested loops:
https://youtu.be/BaSgBU6yLU8.

Hints and Guidelines

To solve this problem, we need to mentally divide the rhombus into two parts – upper one, which
also includes the middle row, and lower one. For the printing of each part we will use two separate
loops, as we leave the reader to decide the dependency between n and the variables of the loops.
For the first loop we can use the following guidelines:

• We print n-row white spaces.

https://youtu.be/tj4s3BOijO4
https://youtu.be/BaSgBU6yLU8

230 Programming Basics with C#

• We print *.

• We print row-1 times *.

The second (lower) part will be printed similarly, which again we leave to the reader to do.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#5.

Problem: Christmas Tree

Write a program that takes a number n (1 ≤ n ≤ 100) and prints a Christmas tree with height of n+1.

Input Output Input Output Input Output Input Output

1
 |
* | *

2
 |
 * | *
** | **

3

 |
 * | *
 ** | **
*** | ***

4

 |
 * | *
 ** | **
 *** | ***
**** | ****

Video: Christmas Tree

Watch this video lesson to learn how to print a Christmas tree on the console using nested loops:
https://youtu.be/UecoBfhUIkk.

Hints and Guidelines

From the examples we see that the Christmas tree can be divided into three logical parts. The first
part is the stars and the white spaces before and after them, the middle part is |, and the last part is
again stars, but this time there are white spaces only before them. The printing can be done with only
one loop and the new string(…) constructor, which we will use once for the stars and once for the
white spaces.

https://judge.softuni.org/Contests/Practice/Index/512#5
https://youtu.be/UecoBfhUIkk

Chapter 6.1. Nested Loops 231

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#6.

Problem: Sunglasses

Write a program that takes an integer n (3 ≤ n ≤ 100) and prints sunglasses with size of 5*n x n as
found in the examples:

Input Output Input Output

3
****** ******
////|||*////*
****** ******

4

******** ********
//////||||*//////*
////// *//////*
******** ********

Input Output

5

********** **********
//////// *////////*
////////|||||*////////*
//////// *////////*
********** **********

Video: Sunglasses

Watch this video lesson to learn how to print sunglasses on the console using nested loops:
https://youtu.be/MTQhIdgno4k.

Hints and Guidelines

From the examples we can see that the sunglasses can be divided into three parts – upper, middle
and lower one. A part of the code with which the problem can be solved is given below.

Printing the Top and Bottom Rows

When drawing the upper and lower rows we need to print 2 * n stars, n white spaces and 2 * n stars.

https://judge.softuni.org/Contests/Practice/Index/512#6
https://youtu.be/MTQhIdgno4k

232 Programming Basics with C#

Printing the Middle Rows

When drawing the middle part, we need to check if the row is (n-1) / 2 - 1, because in the
examples we can see that in this row we need to print pipes instead of white spaces.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#7.

Problem: House

Write a program that takes a number n (2 ≤ n ≤ 100) and prints a house with size n x n, just as in the
examples:

Input Output Input Output Input Output Input Output

2
**
||

3
-*-

|*|

4

-**-

|**|
|**|

5

--*--
-***-

|***|
|***|

Video: Draw a House

Watch this video lesson to learn how to print a house on the console using nested
loops: https://youtu.be/ExjxRM0vXW4.

Hints and Guidelines

We understand from the problem explanation that the house is with size of n x n.
What we see from the example input and output is that:

• The house is divided into two parts: roof and base.

https://judge.softuni.org/Contests/Practice/Index/512#7
https://youtu.be/ExjxRM0vXW4

Chapter 6.1. Nested Loops 233

• When n is an even number, the point of the house is "dull".

• When n is odd, the roof is one row larger than the base.

The Roof

• It comprises of stars and dashes.

• In the top part there are one or two stars, depending on if n is even or odd (also related to the
dashes).

• In the lowest part there are many stars and no dashes.

• With each lower row, the stars increase by 2 and the dashes decrease by 2.

The Base

• The height is n rows.

• It is made out of stars and pipes.

• Each row comprises of 2 pipes – one in the beginning and one in the end of the row, and also
stars between the pipes with string length of n - 2.

Reading the Input Data

We read n from the console and we save it in a variable of int type.

It is very important to check if the input data is correct! In these tasks it is not a
problem to directly convert the data from the console into int type, because it is said
that we will be given valid integers. If you are making more complex programs it is a
good practice to check the data. What will happen if instead of the character "А" the
user inputs a number?

Calculating Roof Length

In order to draw the roof, we write down how many stars we start with in a variable called stars:

• If n is an even number, there will be 2 stars.

• If it is odd, there will be 1.

Calculate the length of the roof. It equals half of n. Write the result in the variable roofLength.

It is important to note that when n is an odd number, the length of the roof is one row more than that
of the base. In C# when you divide two numbers with a remainder, the result will be the number
without remainder. Example:

int result = 3 / 2; // result 1

234 Programming Basics with C#

If we want to round up, we need to use the method Math.Ceiling(…): int result =
(int)Math.Ceiling(3 / 2f); In this example the division isn't between two integers. "f" after a

number shows that this number is of float type (a floating-point number). The result of 3 / 2f is
1.5f. Math.Ceiling(…) rounds the division up. In this case 1.5f will become 2. (int) is used so
that we can transfer the type back to int.

Printing the Roof

After we have calculated the length of the roof, we make a loop from 0 to roofLength. On each
iteration we will:

• Calculate the number of dashes we need to draw. The number will be equal to (n - stars)
/ 2. We store it in a variable padding.

• We print on the console: "dashes" (padding / 2 times) + "stars" (stars times) + "dashes"
(padding / 2 times).

• Before the iteration is over, we add 2 to stars (the number of the stars).

It is not a good idea to add many character strings as it is shown above, because this
leads to performance issues. Learn more at: https://en.wikipedia.org/wiki/
String_(computer_science)#String_buffers

Printing the Base

After we have finished with the roof, it is time for the base. It is easier to print:

• We start with a loop from 0 to n (not inclusive).

• We print on the console: | + * (n - 2 times) + |.

If you have written everything as it is here, the problem should be solved.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#8.

Problem: Diamond

Write a program that takes an integer n (1 ≤ n ≤ 100) and prints a diamond with size n, as in the
examples below.

https://en.wikipedia.org/wiki/String_(computer_science)#String_buffers
https://en.wikipedia.org/wiki/String_(computer_science)#String_buffers
https://judge.softuni.org/Contests/Practice/Index/512#8

Chapter 6.1. Nested Loops 235

Input Output Input Output Input Output Input Output Input Output

1 *

2 **

3
-*-
-
-*-

4
-**-
--
-**-

5

--*--
-*-*-

-*-*-
--*--

Video: Draw a Diamond

Watch this video lesson to learn how to print a diamond on the console using nested loops:
https://youtu.be/Z8crtxDztBk.

Hints and Guidelines

What we know from the problem explanation is that the diamond is with size n x n.

From the example input and output we can conclude that all rows contain exactly n symbols, and all

the rows, with the exception of the top and bottom ones, have 2 stars. We can mentally divide the
diamond into 2 parts:

• Upper part. It starts from the upper tip down to the middle.

• Lower part. It starts from the row below the middle one and goes down to the lower tip
(inclusive).

Upper Part

• If n is an odd number, it starts with 1 star.

• If n is an even number, it starts with 2 stars.

• With each row down, the stars get further away from each other.

• The space between, before and after the stars is filled up with dashes.

Lower Part

• With each row down, the stars get closer to each other. This means that the space (the dashes)
between them is getting smaller and the space (the dashes) on the left and on the right is getting
larger.

• The bottom-most part has 1 or 2 stars, depending on whether n is an even or odd number.

Upper and Lower Parts of the Diamond

• On each row, except the middle one, the stars are surrounded by inner and outer dashes.

• On each row there is space between the two stars, except on the first and the last row
(sometimes the star is 1).

Reading the Input Data

We read n from the console and we save it in a variable of int type.

Printing the Top Part of the Diamond

We start drawing the upper part of the diamond. The first thing we need to do is to calculate the
number of the outer dashes leftRight (the dashes on the outer side of the stars). It is equal to (n
- 1) / 2, rounded down.

https://youtu.be/Z8crtxDztBk

236 Programming Basics with C#

After we have calculated leftRight, we start drawing the upper part of the diamond. We can start
by running a loop from 0 to n / 2 + 1(rounded down).

At each iteration of the loop the following steps must be taken:

• We draw on the console the left dashes (with length leftRight) and right after them the first
star.

• We will calculate the distance between the two stars. We can do this by subtracting from n the
number of the outer dashes, and the number 2 (the number of the stars, i.e. the diamonds
outline). We need to store the result of the subtraction in a variable mid.

• If mid is lower than 0, we know that on the row there should be only 1 star. If it is higher or
equal to 0 then we have to print dashes with length mid and one star after them.

• We draw on the console the right outer dashes with length leftRight.

• In the end of the loop we decrease leftRight by 1 (the stars are moving away from each
other).

We are ready with the upper part.

Printing the Bottom Part of the Diamond

Printing the lower part is very similar to that of the upper part. The difference is that instead of
decreasing leftRight with 1 in the end of the loop, we will increase leftRight with 1 at the
beginning of the loop. Also, the loop will be from 0 to (n - 1) / 2.

Repeating a code is considered bad practice, because the code becomes very hard to
maintain. Let's imagine that we have a piece of code (e.g. the logic for drawing a row
from the diamond) at a few more places and we decide to change it. For this we will
have to go through all the places and change it everywhere. Now let's imagine that
you need to reuse a piece of code not 1, 2 or 3 times but tens of times. A way to
overcome this problem is to use methods. You can look for additional information for
methods in the Internet or to look at Chapter “10” (Methods).

If we have written all correctly, then the problem is solved.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/512#9.

Lab: Drawing Ratings in Web
Now that we got used to nested loops and the way to use them to draw figures on the console, we
can get into something even more interesting: we can see how loops can be used to draw in a Web
environment. We will make a web application that visualizes a number rating (a number from 0 to

https://judge.softuni.org/Contests/Practice/Index/512#9

Chapter 6.1. Nested Loops 237

100) with stars. This kind of visualization is common in e-commerce sites, reviews of products, event
rating, rating of apps, and others.

Don't worry if you don't understand all of the code, how exactly it is written and how the project
works. It is normal, now we are learning to write code and we are a long way from the web
development technologies. If you are struggling to write your project by following the steps, watch
the video from the beginning of the chapter or ask for help in the SoftUni official discussion forum
(http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

Video: Building a Web App "Draw Ratings"

Watch a video lesson to learn how to build ASP.NET MVC Web app to draw ratings by given number:
https://youtu.be/ErnapuBJvZQ.

Ratings – Visualization in a Web Environment

Your task now is to create an ASP.NET MVC Web Application for visualizing a rating (a number from
0 to 100). 1 to 10 stars should be drawn (with halves). The stars should be generated with a for loop.

The user interface might look like the following:

Creating a New C# Project

Create a new ASP.NET MVC web app with C# in Visual Studio. Add a new project from [Solution
Explorer] -> [Add] -> [New Project…]. Give it a meaningful name, for example "WebApp-Ratings".

http://forum.softuni.org/
https://fb.com/softuni.org
https://youtu.be/ErnapuBJvZQ

238 Programming Basics with C#

Choose the type of the app to be MVC.

Creating a View Holding a HTML Form

Open and edit the file Views/Home/Index.cshtml. Delete everything and insert the following code:

This code creates a web form <form> with a field "rating" for inputting a number in the range [0 …
100] and a button [Draw] to send data from the form to the server. The action that will process the
data is called /Home/DrawRatings, which means method DrawRatings in controller Home, which is
in the file HomeController.cs. After the form the contents of ViewBag.Stars are printed. The

code that will be inside will be dynamically generated by the HTML controller with a series of stars.

Chapter 6.1. Nested Loops 239

Adding the DrawRatings(int) Method

Add a method DrawRatings in the controller HomeController. Open the file Controllers/

HomeController.cs and add the following code:

The above code takes the number rating, makes some calculations to find the number of full stars,
the number of empty stars and the number of half-full stars, after which it generates an HTML code,
which orders a few pictures of stars one after the other so that it can make the rating picture from
them. The ready HTML code is stored in ViewBag.Stars to visualize the view Index.cshtml.
Additionally, the sent rating is kept (as a number) in ViewBag.Rating, so that it can be put in the field

for rating in the view. In order to ease your work, you can help yourself with the picture of Visual
Studio below:

240 Programming Basics with C#

Adding Star Images

Create a new images folder in the project, using [Solution Explorer]:

Now add the pictures with the stars (they are a part of the files with this project and can be
downloaded from the book’s GitHub repository: https://github.com/SoftUni/Programming
Basics-Book-CSharp-EN/tree/master/assets/chapter-6-assets). Copy them from Windows Explorer
and paste them in the images folder in [Solution Explorer] in Visual Studio.

Starting and Testing the Project

Start the project with [Ctrl+F5] and enjoy:

https://github.com/SoftUni/ProgrammingBasics-Book-CSharp-EN/tree/master/assets/chapter-6-assets
https://github.com/SoftUni/ProgrammingBasics-Book-CSharp-EN/tree/master/assets/chapter-6-assets

Chapter 6.1. Nested Loops 241

If you have a problem with the example project above, you can ask in the SoftUni official discussion
forum (http://forum.softuni.org) or in the SoftUni official Facebook page (https://fb.com/softuni.org).

http://forum.softuni.org/
https://fb.com/softuni.org

https://softuni.org

Chapter 6.2. Nested Loops – Exam Problems
In the previous chapter we introduced nested loops and how to use them to draw different kinds of
figures on the console. Now we shall solve a few exam problems to gain more experience.

Nested Loops – Quick Review
We learned how to print figures with different sizes, thinking of an appropriate logic to construct them
using single and nested for loops in combination with various calculations and program logic:

for (var r = 1; r <= 5; r++)
{
 Console.Write("*");
 for (var c = 1; c < 5; c++)
 Console.Write(" *");
 Console.WriteLine();
}

We also learned about the new string constructor, which lets you print a character a number of
times defined by us:

string printMe = new string('*', 5);

Now, after the review, let's solve several exam problems related to nested loops to practice what we
learned and to further develop our algorithmic thinking.

Problem: Drawing a Fort
Write a program that reads from the console an integer n and draws a fort 2 * n columns wide and n
rows tall, as in the examples below. The left and right columns inside are n / 2 wide.

Input Data

The input is an integer n within the range [3 … 1000].

Output Data

Print on the console n text rows, depicting the fort exactly as in the examples.

Sample Input and Output

Input Output Input Output Input Output

3
/^\/^\
| |
//

4

/^^\/^^\
| |
| |
__/__/

5

/^^__/^^\
| |
| |
| __ |
__/ __/

Hints and Guidelines

Let’s solve the problem step by step: read the input, perform some calculations, print the fort roof,
print the fort body, print the fort base.

244 Programming Basics with C#

Reading the Input Data

We can see from the explanation that the input data will be only one line which will contain an integer
within the range [3 … 1000]. Therefore, we will use a variable of int type.

After we have declared and initialized the input data, we must divide the fort into three parts:

• roof

• body

• base

Calculating and Printing the Roof

We can see from the examples that the roof is made of two towers and a middle part. Each tower has
a beginning /, middle part ^ and an end \.

\ is a special symbol in C# and using only it in the method Console.WriteLine(…),

the console will not print it, that's why we show with \\ that we want to print exactly
this symbol, without being interpreted as a special symbol (this is called "character
escaping").

The size of the middle part is n / 2, therefore we can write this value in a new variable. It will keep
the size of the middle part of the tower.

Now we declare a second variable, in which will keep the value of the part between the two towers.
The middle part of the roofs has a size of 2 * n - 2 * colSize - 4.

In order to print the roof, we will use new string, which takes two parameters (char, int) and
connects a symbol n times.

Printing the Body of the Fort

The body of the fort contains a beginning |, a middle part (white space) and an end |. The middle
part is a blank space with size of 2 * n - 2. The number of the rows used for walls can be found in
the given parameters: n - 3. This code prints the body of the fort:

Printing the Base of the Fort

In order to draw the last but one row, which is a part of the base, we need to print a beginning |,
middle part (white space)_(white space) and an end |. In order to do this, we can use the

Chapter 6.2. Nested Loops – Exam Problems 245

already declared variables colSize and midSize again, because we can see from the examples that
they are equal to the _ in the roof.

We add + 1 to the white spaces, because we have one white space more in the examples.

The structure of the base of the fort is the same as the one of the roof. It is made of two towers and
a middle part. Each tower begins with \, then a middle part _ and an end /.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/513#0.

Problem: Butterfly
Write a program that takes an integer n from the console and draws a butterfly 2 * n - 1 columns
wide and 2 * (n - 2) + 1 rows tall, as in the examples below. The left and right parts are n - 1 wide.

Input Data

The input is an integer n within the range [3 … 1000].

Output Data

Print on the console 2 * (n - 2) + 1 text rows, depicting the butterfly as in the examples.

Sample Input and Output

Input Output Input Output Input Output

3

\ /
 @
*/ *

5

\ /
---\ /---
\ /
 @
***/ ***
---/ \---
***/ ***

7

*****\ /*****
-----\ /-----
*****\ /*****
-----\ /-----
*****\ /*****
 @
*****/ *****
-----/ \-----
*****/ *****
-----/ \-----
*****/ *****

Hints and Guidelines

We can see in the explanation that the input data will be taken from only one row which contains an
integer within the range [3 … 1000]. This is why we will use a variable of int type.

https://judge.softuni.org/Contests/Practice/Index/513#0

246 Programming Basics with C#

Divide the Figure into Parts

We can divide the figure into 3 parts – upper wing, body and lower wing. In order to draw the upper
wing, we need to divide it into parts – beginning *, middle part \ / and end *. After looking at the
examples we find out that the beginning is with size n - 2.

We can also see that the upper wing is with size n - 2, and that's why we can make a loop which
repeats halfRowSize times.

We can see in the examples that on an even row we have a beginning *, a middle part \ / and an
end *, and on an odd row – beginning -, middle part \ / and an end -. This is why we must add an
if-else condition to check if the row is even or odd and then to draw one of the two types of rows.

Printing the Body and the Lower Wing

In order to create the body of the butterfly we can use the variable halfRowSize again and print on
the console exactly one row. The body structure begins with (white space), middle @ and ends with
(white space).

Now we need to print the lower wing, which is the same as the upper one.

Chapter 6.2. Nested Loops – Exam Problems 247

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/513#1.

Problem: "Stop" Sign
Write a program that takes an integer n from the console and draws a warning sign STOP with size
as in the examples below.

Input Data

The input is an integer N within the range [3 … 1000].

Output Data

Print on the console text lines, which depict the warning sign STOP, as in the examples.

Sample Input and Output

Input Output Input Output

3

...._______....

...//_____\\...

..//_______\\..

.//_________\\.
//___STOP!___\\
___________//
._________//.
.._______//..

6

......._____________.......

......//___________\\......

.....//_____________\\.....

....//_______________\\....

...//_________________\\...

..//___________________\\..

.//_____________________\\.
//_________STOP!_________\\
_______________________//
._____________________//.
..___________________//..
..._________________//...
...._______________//....
.....___________//.....

Hints and Guidelines

We can see from the explanation that the input data will come from only one line which contains an
integer within the range [3 … 1000]. Therefore, we will use a variable of int type.

https://judge.softuni.org/Contests/Practice/Index/513#1

248 Programming Basics with C#

Divide the Figure into Parts

We can divide the figure into 3 parts – upper, middle and lower. The upper part contains two sub-
parts – first row and rows in which the sign widens. The first row is made of a beginning ., middle
part _ and an end .. After looking at the examples we can say that the beginning is n + 1 columns
wide, so it is good to write this value in a separate variable.

We must also create a second variable, in which we will keep the value of the middle of the first row,
which has a size of 2 * n + 1.

After we have declared and initialized the two variables, we can print the first row on the console.

Printing the Upper Part of the Sign

In order to draw the rows in which the sign is getting "wider", we need to create a loop, which runs n
times. The structure of a row contains a beginning ., // + middle part _ + \\ and an end .. In order
to reuse the already created variables, we need to decrease dots by 1 and underscores by 2,
because we have already printed the first row, and the dots and underscores in the upper part of the
figure are decreasing.

In each following iteration the beginning and the end decrease by 1, and the middle part increases by
2.

Printing the Middle Row and the Lower Part

The middle part of the figure begins with // + _, middle part STOP! and an end _ + \\. The count of

the underscores _ is (underscores - 5) / 2.

The lower part of the figure, in which the width of the sign decreases, can be done by creating another
loop, which runs n times. The structure of a row is – a beginning . + \\, middle part _ and an end //

Chapter 6.2. Nested Loops – Exam Problems 249

+ .. The number of the dots in the first iteration should be 0 and in each following one it increases by
one. Therefore, we can say that the size of the dots in the lower part of the figure equals i.

In order for our program to work properly, in each iteration of the loop we need to decrease the
number of _ by 2.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/513#2.

Problem: Arrow
Write a program that takes from the console an integer n and draws a vertical arrow with size as in
the examples below.

Sample Input and Output

Input Output Input Output

3

.###.

.#.#.
##.##
.#.#.
..#..

5

..#####..

..#...#..

..#...#..

..#...#..
###...###
.#.....#.
..#...#..
...#.#...
....#....

Input Data

The input is an odd integer n within the range [3 … 79].

Output Data

https://judge.softuni.org/Contests/Practice/Index/513#2

250 Programming Basics with C#

Print a vertical arrow on the console, in which "#" (number sign) marks the outline of the arrow, and
"." – the rest.

Hints and Guidelines

From the explanation we see that the input data will be read from one input line only, which will
contain an integer within the range [3 … 1000]. This is why we will use a variable of int type.

Divide the Figure into Parts

We can divide the figure into 3 parts – upper, middle and lower one. The upper part contains two
sub-parts – a first row and a body of the arrow. We can see from the examples that the count of the
outer dots on the first row and in the body of the arrow is (n - 1) / 2. We can write this value in
a variable outerDots.

The number of the inside dots in the body of the arrow is (n - 2). We must create a variable named
innerDots, which will store this value.

We can see from the examples the structure of the first row. We must use the declared and initialized
variables outerDots and n, in order to print the first row.

Printing the Body and the Middle Row

In order to draw the body of the arrow, we need to create a loop, which runs n - 2 times.

The middle of the figure is made of a beginning #, a middle . and an end #. The number of # is equal
to outerDots and that's why we can use the same variable again.

Printing the Lower Part of the Arrow

In order to draw the lower part of the arrow, we need to assign new values to the variables outerDots
and innerDots.

Chapter 6.2. Nested Loops – Exam Problems 251

Because new string can't join a symbol 0 times, the loop we are going to make must recur n - 2
times and we need to print the last row of the figure separately. At each iteration outerDots increases

by 1, and innerDots decreases by 2.

The last figure row is made of a beginning ., a middle # and an end .. The number of . is outerDots.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/513#3.

Problem: Axe
Write a program that takes an integer n and draws an axe with size as shown below. The width of the
axe is 5 * N columns.

Sample Input and Output

Input

Input

Input

2 5 8

Output Output Output

------**--
------*-*-
*******-*-
------***-

---------------**--------
---------------*-*-------
---------------*--*------
---------------*---*-----
---------------*----*----
****************----*----
****************----*----
---------------*----*----
--------------********---

------------------------**--------------
------------------------*-*-------------
------------------------*--*------------
------------------------*---*-----------
------------------------*----*----------
------------------------*-----*---------
------------------------*------*--------
------------------------*-------*-------
*************************-------*-------
*************************-------*-------
*************************-------*-------
*************************-------*-------
------------------------*-------*-------
-----------------------*---------*------
----------------------*-----------*-----
---------------------***************----

https://judge.softuni.org/Contests/Practice/Index/513#3

252 Programming Basics with C#

Input Data

The input is an integer n in the range [2...42].

Output Data

Print an axe on the console as in the examples.

Hints and Guidelines

In order to solve the problem, we first need to calculate the dashes in the left, the middle dashes, the
dashes in the right and the whole length of the figure.

Divide the Figure into Parts

We divide the figure into 3 parts: upper part, middle part (the handle), down part.

After we have declared and initialized the variables, we can begin drawing the figure by starting with
the upper part. We can see from the examples what the structure of the first row is, and we can
create a loop, which runs n times. At each iteration of the loop the middle dashes increase by 1, and
the right dashes decrease by 1.

In order to use again the variables that we created in order to draw the handle of the axe, we need
to decrease the middle dashes by 1, and we need to increase the left dashes by 1.

Printing the Handle

We can draw the handle of the axe by creating a loop, which runs n - 2 times. We can see in the

examples what its structure is.

Chapter 6.2. Nested Loops – Exam Problems 253

Printing the Lower Part of the Axe

We need to divide the lower part of the figure into two sub-parts – head of the axe and the last row
of the figure. We will print the head of the axe on the console by creating a loop that runs n / 2 -
1 times. At each iteration the left dashes and the right dashes decrease by 1, and the middle dashes

increase by 2.

For the last row of the figure we can use the three declared and initialized variables leftDashes,
middleDashes, rightDashes again.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/513#4.

https://judge.softuni.org/Contests/Practice/Index/513#4

https://softuni.org

Chapter 7.1. More Complex Loops
Once we have learned what loops are and what the for loops serve for, now is the time to take a
look at other types of loops as well as some more complex loops constructions. They will expand our
knowledge and help us solve difficult and challenging problems. In particular, we will discuss how to
use the following program constructions:

• loops with step

• while loops

• do-while loops

• infinite loops

In the current chapter, we will also learn how to exit from a loop using the break operator. Also, using
the try-catch construction, we will learn how to handle errors during the program execution.

Video: Chapter Overview
Watch a video lesson to review what shall we learn in this chapter about the special and more complex
types of loops: https://youtu.be/J18RgaaMi7U.

Introduction to More Complex Loops by Examples
Loops repeat a piece of code many times while a condition holds and usually changes the so called
"loop variable" after each iteration. The loop variable using a certain step, e.g. 5 or -2. Example of a
for loop from 10 down to 0, using a step -2:

for (int i = 10; i >= 0; i-=2)
 Console.Write(i + " ");
// Output: 10 8 6 4 2 0

Run the above code example: https://repl.it/@nakov/for-loop-step-minus-2-csharp.

One of the simplest loops in programming is the while-loop. It repeats a block of code while a
condition is true:

int n = 5;
int factorial = 1;
while (n > 1)
{
 factorial = factorial * n;
 n--;
}
Console.WriteLine(factorial);
// Output: 120

Run the above code example: https://repl.it/@nakov/while-loop-factorial-csharp.

Another example of loops is the do-while loop. It repeats a code block while a condition holds. For
example, we can calculate the minimum number k, such that 2k > 1,000,000,000, using the code
below:

int num = 1, count = 0;
do
{

https://youtu.be/J18RgaaMi7U
https://repl.it/@nakov/for-loop-step-minus-2-csharp
https://repl.it/@nakov/while-loop-factorial-csharp

256 Programming Basics with C#

 count++;
 num = num * 2;
} while (num <= 1000000000);

Console.WriteLine("2^{0} = {1}", count, num);
// Output: 2^30 = 1073741824

Run the above code example: https://repl.it/@nakov/do-while-loop-power-of-2-calculation-csharp.

Sometime in programming we don't know in advance how many times to repeat a loop, neither we
have a clear loop condition, so we may use infinite loop with exit condition inside the loop. For
example, we want to print the first 5 results, matching certain condition, calculated inside a loop. We
use infinite loop and exit it using the break operator:

int value = 0, min = 100000, count = 0;
while (true)
{
 value = 2 * value + 1;
 if (value > min)
 {
 Console.WriteLine(value);
 count++;
 }

 if (count == 5)
 break;
}

Run the above code example: https://repl.it/@nakov/infinite-loop-with-break-csharp.

Let's get into details on how to use for loops with a step, how to use while loops, how to use do-
while loops and how to design a program logic, based on infinite loops with a break.

For Loop with Step
In the "Repetitions (Loops)" chapter we learned how the for loop works and we already know when
and for what purpose to use it. In this chapter we will pay attention to a particular and very important
part of its construction, namely the step.

Video: Loop with a Step

Watch the following video lesson to learn how to use for-loops with a custom step: https://
youtu.be/QZDpWHcb7dE.

Loop with a Step – Explanation

The step is that part of the for loop construction that tells how much to increase or decrease the
value of its leading variable. It is declared the last in the skeleton of the for loop.

Most often, we have a size of 1, and in this case, instead of writing i += 1 or i -= 1, we can use
the i++ or i-- operators. If we want our step to be different than 1, when increasing, we use the i
+= + step size operator, and when decreasing, the i -= + step size. With step of 10, the loop
would look like this:

https://repl.it/@nakov/do-while-loop-power-of-2-calculation-csharp
https://repl.it/@nakov/infinite-loop-with-break-csharp
https://youtu.be/QZDpWHcb7dE
https://youtu.be/QZDpWHcb7dE

Chapter 7.1. More Complex Loops 257

Here is a series of sample problems, the solution of which will help us better understand the use of
the step in for loop.

Example: Numbers 1...N with Step 3

Write a program that prints the numbers from 1 to n with step of 3. For example, if n = 100, the result
will be: 1, 4, 7, 10, …, 94, 97, 100.

We can solve the problem using the following sequence of actions (algorithm):

• We read the number n from the console input.

• We run a for loop from 1 to n with step size of 3.

• In the body of the loop, we print the value of the current step.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#0.

Example: Numbers N...1 in Reverse Order

Write a program that prints the numbers from n to 1 in reverse order (step of -1). For example, if n =
100, the result will be: 100, 99, 98, …, 3, 2, 1.

Video: Numbers N...1

Watch this video lesson to learn how to print the numbers from N down to 1 (in reverse order) using
a for loop: https://youtu.be/LGPZ-ug3qh0.

Hints and Guidelines

We can solve the problem in the following way:

• We read the number n from the console input.

• We create a for loop by assigning int i = n.

• We reverse the condition of the loop: i >= 1.

• We define the size of the step: -1.

• In the body of the loop, we print the value of the current step.

https://judge.softuni.org/Contests/Practice/Index/514#0
https://youtu.be/LGPZ-ug3qh0

258 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#1.

Example: Numbers from 1 to 2^n with a For Loop

In the following example, we will look at using the usual step with size of 1, combined with a calculation
at each loop iteration.

Write a program that prints the numbers from 1 to 2^n (two in power of n). For example, if n = 10,
the result will be: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

Video: Numbers 1 ... 2^n

Watch this video lesson to learn how to iterate over the number from 1 to 2^n using a for-loop:
https://youtu.be/B2k_yx3EV0I.

Hints and Guidelines

The code below demonstrates how we can calculate the powers of 2 for given n using a for-loop with
a calculation at the end of its body:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#2.

Example: Even Powers of 2

Print the even powers of 2 to 2n: 20, 22, 24, 26, 28, …, 2n. For example, if n = 10, the result will be: 1,
4, 16, 64, 256, 1024.

Video: Even Powers of 2

Watch this video lesson to learn how to print the even powers of 2 using a for loop with a step:
https://youtu.be/H8t4HGn_Ap4.

Hints and Guidelines

Here is how we can solve the problem using a for-loop with a step:

https://judge.softuni.org/Contests/Practice/Index/514#1
https://youtu.be/B2k_yx3EV0I
https://judge.softuni.org/Contests/Practice/Index/514#2
https://youtu.be/H8t4HGn_Ap4

Chapter 7.1. More Complex Loops 259

• We create a num variable for the current number to which we assign an initial value of 1.

• For a step of the loop, we set a value of 2.

• In the body of the loop: we print the value of the current number and increase the current
number num 4 times (according to the problem's description).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#3.

While Loop
The next type of loops that we will get familiar with are called while loops. The specific thing about
them is that they repeat a block of commands while a condition is true. As a structure, they differ
from for loops, and even have a simple syntax.

Video: While Loop

Watch this video lesson to learn how to use the while-loop in C#: https://youtu.be/Jqnxl6k1V9w.

While Loop – Explanation

In programming the while loop is used when we want to repeat the execution of a certain logic while
a condition is in effect. By "condition," we understand every expression that returns true or false.
When the condition is wrong, the while loop is interrupted, the program continues to execute the
remaining code after the loop. The while loop construction looks like this:

Here is a series of sample problems, the solution of which will help us better understand the use of
the while loop.

Example: Sequence of Numbers 2k+1

Write a program that prints all numbers ≤ n of the series: 1, 3, 7, 15, 31, …, assuming that each next
number = previous number * 2 + 1.

Here is how we can solve the problem:

https://judge.softuni.org/Contests/Practice/Index/514#3
https://youtu.be/Jqnxl6k1V9w

260 Programming Basics with C#

• We create a num variable for the current number to which we assign an initial value of 1.

• For a loop condition, we put the current number <= n.

• In the body of the loop: we print the value of the current number and increase the current
number by using the formula from the problem's description.

Here is a sample implementation of this idea:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#4.

Example: Number in Range [1…100]

Enter an integer in the range [1 … 100]. If the entered number is invalid, enter it again. In this case, an
invalid number will be any number that is not within the specified range.

Video: Numbers in the Range [1…100]

Watch this video lesson to learn how to enter a number in the range [1…100] using a while-loop:
https://youtu.be/8W-CIbF4cdA.

Hints and Guidelines

To solve the problem, we can use the following algorithm:

• We create a num variable to which we assign the integer value obtained from the console input.

• For a loop condition, we put an expression that is true if the number of the input is not in the
range specified in the problem's description.

• In the body of the loop: we print a message "Invalid number!" on the console, then we assign a
new value to num from the console input.

• Once we have validated the entered number, we print the value of the number outside the
body of the loop.

Here's a sample implementation of the algorithm using a while loop:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#5.

https://judge.softuni.org/Contests/Practice/Index/514#4
https://youtu.be/8W-CIbF4cdA
https://judge.softuni.org/Contests/Practice/Index/514#5

Chapter 7.1. More Complex Loops 261

Greatest Common Divisor (GCD)
Before proceeding to the next problem, we will get familiar with the definition of the greatest common
divisor (GCD), widely used in mathematics and numbers theory, and will learn how to calculate GCD.

Definition of GCD: the greatest common divisor of two natural numbers a and b is the largest number
that divides both a and b without reminder.

a b GCD

a b GCD

a b GCD

24 16 8 12 24 12 10 10 10

67 18 1 15 9 3 100 88 4

Video: Greatest Common Divisor (GCD)

Watch the video lesson to learn about the Euclidean algorithm for calculating the GCD of given two
integers: https://youtu.be/1-SEOWupvrA.

The Euclidean Algorithm

In the next problem we will use one of the first published algorithms for finding the GCD – Euclid's
algorithm.

Until we reach a remainder of 0:

• We divide the greater number by the smaller one.

• We take the remainder of the division.

Euclid's algorithm pseudo-code:

while b ≠ 0
 var oldB = b;
 b = a % b;
 a = oldB;
print a;

Example: Greatest Common Divisor (GCD)

Enter integers a and b and find GCD(a, b).

We will solve the problem through Euclid's algorithm:

• We create variables a and b to which we assign integer values taken from the console input.

• For a loop condition, we put an expression that is true if the number b is different from 0.

• In the body of the loop we follow the instructions from the pseudo code:

o We create a temporary variable to which we assign the current value of b.

o We assign a new value to b, which is the remainder of the division of a and b.

o On the variable a we assign the previous value of the variable b.

• Once the loop is complete and we have found the GCD, we print it on the screen.

This is a sample implementation of the Euclidean algorithm:

https://youtu.be/1-SEOWupvrA

262 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#6.

Do-While Loop
The next type of loops we will get familiar with are the do-while loops. By structure, this type of
loop resembles the while loop, but there is a significant difference between them. It is that the do-
while loop will execute its body at least once. Why is this happening? In the do-while loop
construction, the condition is always checked after the body, which ensures that the first loop iteration
will execute the code and the check for the end of the loop will be applied to each subsequent
iteration of the do-while.

Now let’s proceed to the usual set of sample practical problems follows. Their solutions will help us
better understand the do-while loops.

Video: Do-While Loop

Watch a video lesson about the do-while loop and how to use it: https://youtu.be/hEJ9-lNyahU.

Example: Calculating Factorial

For natural n number, calculate n! = 1 * 2 * 3 * … * n. For example, if n = 5, the result will be:
5! = 1 * 2 * 3 * 4 * 5 = 120.

Here is how we can specifically calculate factorial:

• We create the variable n to which we assign an integer value taken from the console input.

• We create another variable – a fact which initial value is 1. We will use it for the calculation
and storage of the factorial.

• For a loop condition, we will use n > 1, because each time we perform the calculations in the
body of the loop, we will decrease the value of n by 1.

https://judge.softuni.org/Contests/Practice/Index/514#6
https://youtu.be/hEJ9-lNyahU

Chapter 7.1. More Complex Loops 263

• In the body of the loop:

o We assign a new value to fact that is the result of multiplying the current fact value to
the current value of n.

o We decrease the value of n by -1.

• Outside the body of the loop, we print the final factorial value.

This is a sample code, implementing the above described steps:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#7.

Example: Summing Up Digits

Let's practice the do-while loop with the following exercise:

Sum up the digits of a positive integer n. Examples:

• If n = 5634, the result will be: 5 + 6 + 3 + 4 = 18.

• If n = 920, the result will be: 9 + 2 + 0 = 11.

Video: Sum of Digits

Watch this video lesson to learn how to sum the digits of given integer: https://youtu.be/sbzlzdoEbFc.

Hints and Guidelines

We can use the following idea to solve the problem: extract many times the last digit from the input
number and sum the extracted digits until the input number reaches 0. Example:

• sum = 0

• n = 5634 → extract 4; sum += 4; n = 563

• n = 563 → extract 3; sum += 3; n = 56

• n = 56 → extract 6; sum += 6; n = 5

• n = 5 → extract 5; sum += 5; n = 0 → end

In more detail the above idea looks like this:

• We create the variable n, to which we assign a value equal to the number entered by the user.

• We create a second variable – sum, which initial value is 0. We will use it for the calculation and
storage of the result.

• As a loop condition, we will use n > 0 because after each calculation of the result in the body

of the loop, we will remove the last digit of n.

https://judge.softuni.org/Contests/Practice/Index/514#7
https://youtu.be/sbzlzdoEbFc

264 Programming Basics with C#

• In the body of the loop:

o We assign a new value of sum that is the result of the sum of the current value of sum with
the last digit of n.

o We assign a new value to n, which is the result of removing the last digit of n.

• Outside the body of the loop, we print the final value of the sum.

This is a sample code, implementing the above described steps:

n % 10: returns the last digit of the number n.

n / 10: deletes the last digit of n.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#8.

Infinite Loops with Break
So far, we were introduced to various types of loops, learning what structures they have and how
they are applied. Now, we need to understand what an infinite loop is, when it occurs, and how we
can break it using the break operator.

Video: Infinite Loops with Break

Watch this video lesson to learn how to use infinite loops, along with the break operator:
https://youtu.be/rpez6b9TpdA.

Infinite Loop – Explanation

We call an infinite loop one that repeats infinitely the performance of its body. In while and do-
while loops the end check is a conditional expression that always returns true. Infinite for occurs
when there is no condition to end the loop.

Here is what an infinite while loop looks like:

And here is what an infinite for loop looks like:

https://judge.softuni.org/Contests/Practice/Index/514#8
https://youtu.be/rpez6b9TpdA

Chapter 7.1. More Complex Loops 265

The Operator "Break"

We already know that the infinite loop performs a certain code infinitely, but what if we want at some
point under a given condition to go out of the loop? The break operator comes in handy in this
situation.

The break operator stops the execution of a loop at the time it is called and continues

from the first line after the end of the loop. This means that the current iteration of the
loop will not be completed, accordingly, the rest of the code in the body of the loop
will not be executed.

Example: Prime Number Checking

The next problem we are going to solve is to check whether given number is prime. An integer is
prime if it cannot be decomposed to a product of other numbers. For example: 2, 5 and 19 are primes,
while 9, 12 and 35 are composite.

Video: Prime Number Checking

Watch this video lesson to learn how to design and implement an algorithm to check if given number
is prime: https://youtu.be/4lWOaPWKf0I.

Hints and Guidelines

Before proceeding to the hints about solving the "prime checking" problem, let's recall in bigger detail
what prime numbers are.

Definition: an integer is prime if it is divisible only by itself and by 1. By definition, the prime numbers
are positive and greater than 1. The smallest prime number is 2.

We can assume that an integer n is a prime number if n > 1 and n is not divisible by a number between
2 and n-1.

The first few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, …

Unlike the prime numbers, composite numbers are integers which can be obtained by multiplying
several prime numbers.

Here are some examples of composite numbers:

• 10 = 2 * 5

• 42 = 2 * 3 * 7

• 143 = 13 * 11

Positive integers, greater than 1, can be either prime or composite (product of primes). Numbers like
0 and 1 are not prime but are also not composite.

We can check if an integer is prime following the definition: check if n > 1 and n is divisible by 2, 3,
…, n-1 without reminder.

• If it is divisible by any of the numbers, it is composite.

• If it is not divisible by any of the numbers, then it is prime.

https://youtu.be/4lWOaPWKf0I

266 Programming Basics with C#

We can optimize the algorithm instead of checking it to n-1, to check divisors to √n.
Think what the reason for that is!

Prime Checking Algorithm

The most popular algorithm to check if a number n is prime is by checking if n is divisible by the
numbers between 2 and √n.

The steps of the "prime checking algorithm" are given below in bigger detail:

• We create the variable n to which we assign an integer taken from the console input.

• We create an isPrime bool variable with an initial value true. We assume that a number is
prime until proven otherwise.

• We create a for loop in which we set an initial value 2 for the loop variable, for condition the
current value <= √n. The loop step is 1.

• In the body of the loop, we check if n, divided by the current value, has a remainder. If there is
no reminder from the division, then we change isPrime to false and we exit the loop through
the break operator.

• Depending on the value of isPrime, we print whether the number is prime (true) or composite
(false).

Implementation of the Prime Checking Algorithm

Here is a sample implementation of the prime checking algorithm, described above:

What remains is to add a condition that checks if the input number is greater than 1, because by
definition numbers such as 0, 1, -1 and -2 are not prime.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#9.

https://judge.softuni.org/Contests/Practice/Index/514#9

Chapter 7.1. More Complex Loops 267

Example: Enter an Even Number

The next example will be to write a program that enters an even number from the console. If an odd
number is entered, the program should enter a number again, until an even number is entered.

We shall use an infinite loop with break to solve this problem, because we don't know how many
times the loop body will be repeated.

We shall check if a particular number n is even, and if it is, we will print it on the screen. An even
number is one that can be divided by 2 without remainder. If an invalid number is entered, we will ask
the user to enter a number again and will display a notification that the input number is not even.

Hints and Guidelines

Here is an idea how we can implement the above described logic:

• We create a variable n to which we assign an initial value of 0.

• We create an infinite while loop and as condition we will set true.

• In the body of the loop:

o We take an integer value from the console input and assign it to n.

o If the number is even, we exit the loop by break.

o Otherwise, we display a message stating that the number is not even. The iterations
continue until an even number is entered.

• Finally, after the loop, print the even number on the screen.

Implementation

Note: Although the code above is correct, it will not work if the user enters text instead of numbers,
such as "Invalid number". Then parsing the text to a number will break and the program will display
an error message (exception). How to deal with this problem and how to capture and process
exceptions using the try-catch construction will be learned later.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#10.

Nested Loops and Break
Once we have learned what the nested loops are and how the break operator works, it is time to

figure out how they work together. For a better understanding, let's step by step write a program that

https://judge.softuni.org/Contests/Practice/Index/514#10

268 Programming Basics with C#

should make all possible combinations of pairs of numbers. The first number of the combination is
increasing from 1 to 3 and the second one is decreasing from 3 to 1. The problem must continue
running until i + j is not equal to 2 (i = 1 and j = 1). The desired result is:

Wrong Implementation

Here is a wrong solution that looks right at first sight:

If we leave our program that way, our result will be as follows:

Why is it so? As we can see, the result is missing "1 1". When the program reaches that point that i
= 1 and j = 1, it enters the if check and executes the break operation. This way, it goes out of the

inner loop, but then continues the execution of the outer loop. i grows, the program enters the
internal loop and prints the result.

When we use the break operator in a nested loop, it interrupts the execution of the

inner loop only.

Correct Implementation

What is the right solution? One way to solve this problem is by declaring a bool variable to keep track
if the loop rotation has to continue. If you need to exit (leave all nested loops), we set the variable to

Chapter 7.1. More Complex Loops 269

true and exit the inner loop with a break, and in the next check we exit the outer loop. Here is an
example implementation of this idea:

Thus, when i + j = 2, the program will set the hasToEnd = true and exit the inner loop. Upon

the next rotation of the outer loop, through the check, the program will not be able to reach the inner
loop and will interrupt its execution.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#11.

Handling Errors: Try-Catch
The last thing we will get familiar with in this chapter is how to "capture" wrong data using the try-
catch construction.

Video: Using Try-Catch

Watch this video lesson to learn how to use the try-catch statement to enter a valid integer number
in certain range: https://youtu.be/0WLRjNcSh3I.

What is Try-Catch?

The try-catch construction is used to intercept and handle exceptions (errors) during the program
execution.

In programming, exceptions are a notification of an event that violates the normal operation of a
program. Such exceptional events interrupt the execution of the program, and it is looking for
something to process the situation. If it does not find it, the exception is printed on the console. If
found, the exception is processed, and the program continues its normal execution. After a while, we'll
see how this happens.

When an exception is found (e.g. when we divide an integer by zero), it is said that the exception was
"thrown" (throw exception).

https://judge.softuni.org/Contests/Practice/Index/514#11
https://youtu.be/0WLRjNcSh3I

270 Programming Basics with C#

When the exception is handled and a piece of program logic recovers the program execution from
the problem, we say the we "catch the exception".

The Try-Catch Construction

The try-catch construction in C# has different forms, but for now we will use the most basic of
them:

We have a piece of code (sequence of commands) inside the try block. If this code runs normally
(without errors), all the commands in the try blocks are executed. If some of the commands in the
try block throw and exception (in case of an error), the code execution is stopped, and the catch
block is executed. In this case we say that we catch and handle the error (exception).

In the next task, we will see how to handle a situation where a user enters a non-numeric input (for
example, a string instead of an int) by try-catch.

Example: Dealing with Invalid Numbers with Try-Catch

Write a program that checks if an n number is even, and if it is, prints it on the screen. If an invalid
number is entered, the program should display a notification that the entered input is not a valid
number and the entering of the number has to be done again.

Here's how we can solve the problem:

• We create an infinite while loop and as a condition we set true.

• In the body of the loop:

o We create a try-catch construction.

o In the try block we write the programming logic for reading the user input, parsing it to a
number, and the check for even number.

o If it is an even number, we print it and go out of the loop (with break). The program is
done and ends.

o If it is an odd number, we print a message saying that an even number is required without
leaving the loop (because we want it to be repeated again).

o If we catch an exception when executing the try block, we write a message for invalid
input number (and the loop is repeated because we do not explicitly go out of it).

Enter Even Number – Implementation

Here is a sample implementation of the described idea:

Chapter 7.1. More Complex Loops 271

Play with the above code. Try to enter invalid numbers (e.g. text messages), non-integer numbers, odd
numbers and even numbers.

The solution should work in all cases: whether we are entering integer numbers, invalid numbers (for
example, too many digits), or non-numbered text.

The above program logic will repeat in an infinite loop the process of entering a value until a valid
even integer is entered.

• The int.Parse() method will throw an exception in case of an invalid integer.

• In case of a valid integer, the program will check if it is even. In this case a "success" message is
shown, and the loop is stopped using break.

• In case of an odd integer, an error message is shown, and the loop repeats again.

• In case of an exception (error during the number parsing), an error message is shown, and the
loop repeats again.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#12.

Exercises: More Complex Loops
In this chapter, we got familiar with some new types of loops that can perform repetitions with more
complex programming logic. Let's solve a few practical problems using these new constructs.

Video: Chapter Summary

Watch this video to review what we learned in this chapter: https://youtu.be/6Wrna8Q0LFA.

What We Learned in This Chapter?

First, let's recall what we have learned.

https://judge.softuni.org/Contests/Practice/Index/514#12
https://youtu.be/6Wrna8Q0LFA

272 Programming Basics with C#

We can use for loop with a step:

for (var i = 1; i <= n; i+=3)
{
 Console.WriteLine(i);
}

The while / do-while loops are repeated while a condition is true:

int num = 1;
while (num <= n)
{
 Console.WriteLine(num++);
}

If we have to interrupt the loop execution, we do it with the operator break:

var n = 0;
while (true)
{
 n = int.Parse(Console.ReadLine());
 if (n % 2 == 0)
 {
 break; // even number -> exit from the loop
 }
 Console.WriteLine("The number is not even.");
}
Console.WriteLine("Even number entered: {0}", n);

We can catch errors during the program execution:

try
{
 Console.Write("Enter even number: ");
 n = int.Parse(Console.ReadLine());
}
catch
 Console.WriteLine("Invalid number.");
}
// If int.Parse(…) fails, the catch { … } block will execute

Now, let’s work on a few exercises to practice the new loop types, learned from this chapter.

Problem: Fibonacci Numbers

Fibonacci's numbers in mathematics form a sequence that looks like this: 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, ….

The formula to form the Fibonacci sequence is:

F0 = 1
F1 = 1
Fn = Fn-1 + Fn-2

Chapter 7.1. More Complex Loops 273

Sample Input and Output

Input (n) Output Comment Input (n) Output

10 89 F(11) = F(9) + F(8) 0 1

5 8 F(5) = F(4) + F(3) 1 1

20 10946 F(20) = F(19) + F(18) 2 2

Enter an integer number n and calculate the n-number of Fibonacci.

Video: Fibonacci Numbers

Watch this video lesson to learn how to calculate the Fibonacci numbers using a for loop:
https://youtu.be/1ZR0ZBFzB3c.

Hints and Guidelines

An idea to solve the problem:

• We create a variable n to which we assign an integer value from the console input.

• We create the variables f0 and f1 to which we assign a value of 1, since the sequence starts.

• We create a for loop with condition the current value i < n - 1.

• In the body of the loop:

o We create a temporary variable fNext, to which we assign the next number in the

Fibonacci sequence.

o To f0 we assign the current value of f1.

o To f1 we assign the value of the temporary variable fNext.

• Out of the loop we print the nth number of Fibonacci.

Example implementation:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#13.

Problem: Numbers Pyramid

Print the numbers 1 … n in a pyramid as in the examples below. On the first line we print one number,
on the second line we print two numbers, on the third line we print three numbers, and so on, until
the numbers are over. On the last line we print as many numbers as we get until we get to n.

https://youtu.be/1ZR0ZBFzB3c
https://judge.softuni.org/Contests/Practice/Index/514#13

274 Programming Basics with C#

Sample Input and Output

Input Output

Input Output

Input Output

Input Output

7

1
2 3
4 5 6
7

5

1
2 3
4 5

10

1
2 3
4 5 6
7 8 9 10

9

1
2 3
4 5 6
7 8 9

Video: Pyramid of Numbers

Watch this video lesson to learn how to draw a pyramid of numbers using nested loops and the break
operator: https://youtu.be/SWU-gQa31QI.

Hints and Guidelines

We can solve the problem with two nested loops (by rows and columns) with printing in them and
leaving when the last number is reached. Here is the idea, written in more details:

• We create a variable n, to which we assign an integer value from the console input.

• We create a variable num with an initial value of 1. It will keep the number of printed numbers.
At each iteration we will increase it by 1 and print it.

• We create an outer for loop that will be responsible for the rows in the table. We name the
variable of the loop row and set an initial value of 0. For condition, we set row < n. The size of
the step is 1.

• In the body of the loop we create an inner for loop that will be responsible for the columns in
the table. We name the variable of the loop col and set an initial value of 0. For a condition,
we set col < row (row = number of digits per line). The size of the step is 1.

• In the body of the nested loop:

o We check if col > 1, if yes –> we print space. If we do not do this, but directly print the
space, we will have an unnecessary one at the beginning of each line.

o We print the number num in the current cell of the table and increase it by 1.

o We are checking for num > n. If num is greater than n, we interrupt the running of the

inner loop.

• We print a blank line to move to the next one.

• Again, we check if num > n. If it is greater, we interrupt our program by break.

Implementation of the Idea

Here is a sample implementation:

https://youtu.be/SWU-gQa31QI

Chapter 7.1. More Complex Loops 275

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#14.

Problem: Numbers Table

Print the numbers 1 … n in a table as in the examples below.

Sample Input and Output

Input Output

Input Output

Input Output

Input Output

3

1 2 3
2 3 2
3 2 1

4

1 2 3 4
2 3 4 3
3 4 3 2
4 3 2 1

2
1 2
2 1

5

1 2 3 4 5
2 3 4 5 4
3 4 5 4 3
4 5 4 3 2
5 4 3 2 1

Video: Table with Numbers

Watch this video lesson to learn how to print a table of numbers like the shown above using nested
loops: https://youtu.be/DVf7riptCwA.

Hints and Guidelines

We can solve the problem using two nested loops and little calculations inside them:

• We read from the console the table size in an integer variable n.

• We create a for loop that will be responsible for the rows in the table. We name the loop
variable row and assign it to an initial value of 0. As a condition, we set row < n. The step is 1.

• In the body of the loop we create a nested for loop that will be responsible for the columns in
the table. We name the loop variable col and assign it an initial value of 0. As a condition, we
set col < n. The size of the step is 1.

• In the body of the nested loop:

https://judge.softuni.org/Contests/Practice/Index/514#14
https://youtu.be/DVf7riptCwA

276 Programming Basics with C#

o We create a num variable to which we assign the result of the current row + the current
column + 1 (+1 as we start the count from 0).

o We check for num > n. If num is greater than n, we assign a new value to num which is

equal to two times n – the current value for num. We do this in order not to exceed n in
any of the cells in the table.

o We print the number from the current table cell.

• We print a blank line in the outer loop to move to the next row.

Implementation of the Idea

Here is a sample implementation of the described idea:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/514#15.

Lab: Web Application with Complex Loops
Now we know how to repeat a group of actions using loops. Let's do something interesting: a web-
based game. Yes, a real game, with graphics and game logic. Let's have fun. It will be complicated, but
if you do not understand how it works, relax. We are now entering into programming. You will advance
with coding and with the software technologies over the time. For now, just follow the steps.

Problem: Web Application "Fruits Game"

Description: Develop an ASP.NET MVC Web Application – a game in which the player shoots fruits,
arranged in a table. Successfully hit fruits disappear and the player gets points for each target fruit.
When you hit a dynamite, the fruits explode and the game ends (as in Fruit Ninja). The game is pretty
simple, without animation and sound effects. It is designed to illustrate what apps you will be able to
create later, when you learn C# and ASP.NET MVC web development.

Video: Fruits Game – ASP.NET MVC Web App

Watch this video lesson to learn how to build an ASP.NET MVC Web application "Fruits Game":
https://youtu.be/inCr6SpHWC0.

https://judge.softuni.org/Contests/Practice/Index/514#15
https://youtu.be/inCr6SpHWC0

Chapter 7.1. More Complex Loops 277

Fruits Game Explained

Shooting is done by columns, top to bottom or bottom to top, and the location of impact (the column
under fire) is set by a scroll bar. Because of the inaccuracy of the scroller, the player is not quite sure
which column they are going to shoot. Thus, every shot has a chance not to hit and this makes the
game more interesting (like the sling in Angry Birds). Our game may look like this:

Create New C# Project

In Visual Studio, we create a new ASP.NET MVC web application with C# language. Add a new project
from [File] → [New] → [Project…]. We give it a meaningful name, for example "Fruits-Web-Game":

Then we choose the type of Web app "MVC":

278 Programming Basics with C#

Create Controls

Now we will create the controls for the game. The goal is to add scrolling bars by which the player is
targeting, and a button for starting a new game. We need to edit the file Views/Home/Index.cshtml.
We delete everything in it and write the code from the picture:

This code creates an HTML form <form> with a scroller position for setting a number in the range
[0 … 100] and a button [Fire Top] for sending the form data to the server. The action that will process
the data is called Home/FireTop, which means FireTop method in the Home controller, which is
located in the file HomeController.cs. There are two similar forms with the [Fire Bottom] and [New
Game] buttons.

Chapter 7.1. More Complex Loops 279

Prepare Fruits for the View

Now we have to prepare the fruits for drawing in the view. Add the following code to the controller:
Controllers/HomeController.cs:

The above code defines the fields for number of rows, number of columns, fruit table (playing field),
points accumulated by the player and information whether the game is active or ended (field
gameOver). The playing field has 9 columns in 3 rows and contains for each field a text stating what
is inside it: apple, banana, orange, kiwi, empty or dynamite. The main action Index() prepares
the game field by recording in the ViewBag the structure of the game elements and invoking the view
that draws them into the game page of the web browser as HTML.

Generate Random Fruits

We need to generate random fruits. To do this, we need to write a GenerateRandomFruits()
method with the code from the image below. This code records in the matrix fruits names of
different images and thus builds the playing field. Each cell of the table records one of the following
values: apple, banana, orange, kiwi, empty or dynamite. Next, to draw the corresponding image
in the view, the text of the table will be joined with the suffix “.png” and this will give the name of

the picture file that has to be inserted into the HTML page as part of the playing field. Filling in the
playing field (9 columns with 3 rows) happens in the view Index.cshtml with two nested for loops
(for row and column).

In order to generate random fruit for each cell, a random number is generated between 0 and 8 (see
the class Random in .NET). If the number is 0 or 1, we place apple, if it is between 2 and 3, we place

banana and so on. If the number is 8, we place dynamite. Obviously, the fruits appear twice as often
as the dynamite. Here's the code:

280 Programming Basics with C#

Add Game Images

The next thing is to add the images for the game. From [Solution Explorer] create folder images in the
root directory of the project. We use the menu [Add] → [New Folder].

Now we add the game images (they are part of the project files for this project and can be downloaded
from the book’s GitHub repository: https://github.com/SoftUni/Programming-Basics-Book-CSharp-
EN/tree/master/assets/chapter-7-assets). We copy them from Windows Explorer and put them in
the images folder in [Solution Explorer] in Visual Studio with copy/paste.

https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/tree/master/assets/chapter-7-assets
https://github.com/SoftUni/Programming-Basics-Book-CSharp-EN/tree/master/assets/chapter-7-assets

Chapter 7.1. More Complex Loops 281

Visualize Fruits

Drawing Fruits in Index.cshtml:

In order to draw the playing field with the fruits, we need to rotate two nested loops (for rows and
columns). Each row consists of 9 images, each of which contains an apple, banana or other fruit, or
empty empty, or dynamite. Images are drawn by printing an HTML tag to insert a picture: <img src
= "/images/apple.png" />. Nine pictures are stacked one after the other on each row, followed

by a new line with a
. This is repeated three times for the three lines. Finally, the player's points
are printed. Here is what the code for drawing the playing field and points looks like:

Take a look at the yellow characters @ – they are used to switch between the C# and HTML languages
and come from the Razor syntax for drawing dynamic web pages.

Change Text in Layout

We need to adjust the texts in the /Views/Shared/_Layout.cshtml file. We replace My ASP.NET

Application with more appropriate text, e.g. Fruits:

282 Programming Basics with C#

Test the Application

Start the project using [Ctrl + F5] and enjoy it. It is expected to generate a random 9-to-3 playing field
with fruits and visualize it on the web page through a series of pictures:

Now the game is sort of done: the playing field is randomly generated and rendered successfully (if
you have not made a mistake somewhere). What remains is to fulfill the essence of the game: shooting
the fruits.

Shooting the Fruits

For the fruit shooting, we need to add the actions [Reset] and [Fire Top] / [Fire Bottom] to the
controller HomeController.cs:

Chapter 7.1. More Complex Loops 283

The above code defines three actions:

• Reset() – starts a new game by generating a new random playing field with fruits and
explosives, resetting the player's points and making the game valid (gameOver = false). This
action is pretty simple and can be immediately tested using [Ctrl + F5] before writing the others.

• FireTop(position) – shoots on row 0 at position position (number 0 to 100). The shooting
is in direction down (+1) from row 0 (top). Shooting itself is more complicated as a logic and will
be considered after a while.

• FireBottom(position) – shoots on row 2 at position position (number 0 to 100). The
shooting is in direction up (-1) from row 2 (bottom).

Implement the "Fire" Method

We implement the "firing" method Fire (position, startRow, step):

Shooting works like this: first calculate the column number col to which the player has targeted. The
input number from the scroll bar (between 0 and 100) is reduced to a number between 0 and 8 (for
each of the 9 columns). Line number row is either 0 (if the shot is on top) or the number of lines minus
one (if the shot is below). Accordingly, the shooting direction (step) is 1 (down) or - 1 (upwards).

In order to find where the shot hits fruit or dynamite, go through a loop through all the cells in the
playing field in the target column and from the first to the last attack row. If a fruit is hit, it disappears
(replaced by empty) and points are given to the player. If the dynamite is hit, the game is marked as
finished.

The more enthusiastic among you can implement a more complex behavior, for example, to give
different points in the pursuit of a different fruit, to carry out animation with an explosion (this is not
too easy), to take points in unnecessary firing in an empty column and so on.

Test the Application Again

We are testing what created up until now by starting with [Ctrl + F5]:

284 Programming Basics with C#

• New Game → the
new game button aims
to generate a new
playing field holding
randomly placed fruits
and explosives and to
reset the score of the
player.

• Shooting from top →
the top firing must
remove the top fruit in
the hit column or
cause the game to end
if there is dynamite. In
fact, at the end of the
game nothing is going
to happen, because in
the view this case is
still not considered.

• Shooting from bottom → the shooting from bottom should remove the lowest fruit in the hit
column or end the game when you hit the dynamite.

Implement "Game Over"

For now, at "End of the game" nothing happens. If a player reaches a dynamite, the controller says
that the game is over (gameOver = true), but this fact is not visualized in any way. In order for the
game to finish, we need to add several checks in the view:

The new code in the view should look like this:

Chapter 7.1. More Complex Loops 285

The code above checks whether the game has finished and indicates accordingly the shooting controls
and the playing field (active game) or exploding fruit picture at the end of the game.

Final Testing of the Application

After changing the code in the view, let's start by [Ctrl + F5] and test the game again:

This time, when you hit a dynamite, the right picture should appear and allow only the "new game"
action (the [New Game] button).

Was it complicated? Did you manage to create the game? If you have not succeeded, relax, this is a
relatively complex project that includes a great deal of non-studied matter. If you want the Web game
to pass through your hands, follow the above steps. In case of questions / problems, you ask for
assistance in the SoftUni official discussion forum (http://forum.softuni.org) or in the SoftUni official
Facebook page (https://fb.com/softuni.org).

http://forum.softuni.org/
https://fb.com/softuni.org

https://softuni.org

Chapter 7.2. More Complex Loops – Exam
Problems
In the previous chapter we learned how to execute a block of commands more than once using a for
loop. To improve our knowledge and skills, let's solve some more complicated problems with loops,
given at the exams in SoftUni.

More Complex Loops – Quick Review
In the previous chapter we reviewed some loop structures that would help us solve more complex
problems:

• loops with a step (e.g. print the numbers 1, 3, 5, …, n)

• nested loops (loops located inside other loops)

• while loops (repeat a block of code while an entrance condition is true)

• do-while loop (repeat a block of code while an exit condition is true)

• infinite loops and breaking out of loop (break operator)

• the try-catch construction (handle runtime errors)

Problem: Dumb Passwords Generator
Write a program that enters two integers n and l and generates in alphabetical order all possible
"dumb" passwords that consist of the following 5 characters:

• Character 1: digit from 1 to n.

• Character 2: digit from 1 to n.

• Character 3: small letter among the first l letters of the Latin alphabet.

• Character 4: small letter among the first l letters of the Latin alphabet.

• Character 5: digit from 1 to n, bigger than first 2 digits.

Sample Input and Output

Input Output Input Output

2
4

11aa2 11ab2 11ac2 11ad2 11ba2 11bb2 11bc2 11bd2
11ca2 11cb2 11cc2 11cd2 11da2 11db2 11dc2 11dd2

 3
1

11aa2 11aa3 12aa3
21aa3 22aa3

Input Output Input Output

4
2

11aa2 11aa3 11aa4 11ab2 11ab3 11ab4 11ba2 11ba3
11ba4 11bb2 11bb3 11bb4 12aa3 12aa4 12ab3 12ab4
12ba3 12ba4 12bb3 12bb4 13aa4 13ab4 13ba4 13bb4
21aa3 21aa4 21ab3 21ab4 21ba3 21ba4 21bb3 21bb4
22aa3 22aa4 22ab3 22ab4 22ba3 22ba4 22bb3 22bb4
23aa4 23ab4 23ba4 23bb4 31aa4 31ab4 31ba4 31bb4
32aa4 32ab4 32ba4 32bb4 33aa4 33ab4 33ba4 33bb4

3
2

11aa2 11aa3 11ab2
11ab3 11ba2 11ba3
11bb2 11bb3 12aa3
12ab3 12ba3 12bb3
21aa3 21ab3 21ba3
21bb3 22aa3 22ab3
22ba3 22bb3

Input Data

The input is read from the console and consists of two integers: n and l within the range [1 … 9].

288 Programming Basics with C#

Output Data

Print on the console all "dumb" passwords in alphabetical order, separated by space.

Hints and Guidelines

We can split the solution of the problem into 3 parts:

• Reading the input – in the current problem this includes reading two numbers n and l, each on
a single line.

• Processing the input data – using of nested loops to iterate through every possible symbol for
each of the five password symbols.

• Printing the output – printing every "dumb" password that meets the requirements.

Reading the Input Data

For reading of input data we will declare two integer variables int: n and l.

Let's declare and initialize the variables that will store the characters of the password: for the
characters of digit type – int – d1, d2, d3, and for the letters – of char type – l1, l2. To make it
easier we will skip explicit specification of the type by replacing it with the keyword var.

Processing the Input Data and Printing Output

We need to create five for nested loops, one for each variable. To ensure that the last digit d3 is
greater than the first two, we will use the built-in function Math.Max(…).

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/515#0.

https://judge.softuni.org/Contests/Practice/Index/515#0

Chapter 7.2. More Complex Loops – Exam Problems 289

Did you Know That…?

• In C# we can define a for loop with variable of char type:

• We can read variable of char type from the console with the following structure:

• We can convert a Capital char into small one, using a built-in C# function:

• By reading the chars from the console, we can directly convert upper to lowercase letters, by
combining the above two lines:

Problem: Magic Numbers
Write a program that enters a single integer magic number and produces all possible 6-digit numbers
for which the product of their digits is equal to the magical number.

Example: "Magic number" → 2

• 111112 → 1 * 1 * 1 * 1 * 1 * 2 = 2

• 111121 → 1 * 1 * 1 * 1 * 2 * 1 = 2

• 111211 → 1 * 1 * 1 * 2 * 1 * 1 = 2

• 112111 → 1 * 1 * 2 * 1 * 1 * 1 = 2

• 121111 → 1 * 2 * 1 * 1 * 1 * 1 = 2

• 211111 → 2 * 1 * 1 * 1 * 1 * 1 = 2

Input Data

The input is read from the console and consists of one integer within the range [1 … 600 000].

Output Data

Print on the console all magic numbers, separated by space.

Sample Input and Output

Input 2

Output 111112 111121 111211 112111 121111 211111

Input 8

Output

111118 111124 111142 111181 111214 111222 111241 111412 111421 111811
112114 112122 112141 112212 112221 112411 114112 114121 114211 118111
121114 121122 121141 121212 121221 121411 122112 122121 122211 124111
141112 141121 141211 142111 181111 211114 211122 211141 211212 211221
211411 212112 212121 212211 214111 221112 221121 221211 222111 241111
411112 411121 411211 412111 421111 811111

Input 531441

Output 999999

290 Programming Basics with C#

Solution using a "For" Loop

The solution follows the same concept (again we need to generate all combinations for the n element).
Following these steps, try to solve the problem yourself.

• Declare and initialize variable of int type and read the input from the console.

• Nest six for loops one into another, for every single digit of the searched 6-digit numbers.

• In the last loop, using if, check if the product of the six digits is equal to the magic number.

Solution using a "While" Loop

In the previous chapter we reviewed other loop constructions. Let's look at the sample solution of the
same problem using the while loop.

First, we need to store the input magical number in a suitable variable. Then we will initialize 6
variables – one for each of the six digits of the searched numbers.

Chapter 7.2. More Complex Loops – Exam Problems 291

Writing a While Loop

Then we will start writing while loops.

• We will initialize first digit: d1 = 0.

• We will set a condition for each loop: the digit will be less than or equal to 9.

• In the beginning of each loop we set a value of the next digit, in this case: d2 = 0. In the nested
for loops we initialize the variables in the inner loops at each increment of the outer ones. We
want to do the same here.

• At the end of each loop we will increase the digit by one: d++.

• In the innermost loop we will make the check and if necessary, we will print on the console.

292 Programming Basics with C#

Infinite While Loop

Let's remove the if check from the innermost loop. Now, let's initialize each variable outside of the
loops and delete the rows dx = 0. After we run the program, we only get 10 results. Why? What if
you use do-while? In this case this loop does not look appropriate, does it? Think why. Of course,
you can solve the problem using an infinite loop.

As we can see, we can solve a problem using different types of loops. Of course, each task has its
most appropriate choice. In order to practice each type of loops – try to solve each of the following
problems with all the learned loops.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/515#1.

Problem: Stop Number
Write a program that prints on the console all numbers from N to M, that are divisible by 2 and 3
without reminder, in reversed order. We will read one more "stop" number from the console – S. If
any of the numbers divisible by 2 and 3 is equal to the stop number, it should not be printed, and the
program should end. Otherwise print all numbers up to N, that meet the condition.

Input Data

Read from the console 3 numbers, each on a single line:

• N – integer number: 0 ≤ N < M.

• M – integer number: N < M ≤ 10000.

• S – integer number: N ≤ S ≤ M.

https://judge.softuni.org/Contests/Practice/Index/515#1

Chapter 7.2. More Complex Loops – Exam Problems 293

Output Data

Print on the console on a single line all numbers, that meet the condition, separated by space.

Sample Input and Output

Input Output Comments

1
30
15

30 24 18 12 6

Numbers from 30 to 1, that are divisible at the same time by 2 and
3 without reminder are: 30, 24, 18, 12 and 6. The number 15 is not
equal to any, so the sequence continues.

Input Output Comments

1
36
12

36 30 24 18

Numbers from 36 to 1, that are divisible at the same time by 2 and 3
without reminder are: 36, 30, 24, 18, 12 and 6. The number 12 is
equal to the stop number, so we stop by 18.

Hints and Guidelines

The problem can be divided into four logical parts:

• Reading the input.

• Checking all numbers in the given range, and then running a loop.

• Checking the conditions of the problem according to every number in the given range.

• Printing the numbers.

First part is ordinary – we read three integer numbers from the console, so we will use int.

We have already seen examples of the second part – initialization of the for loop. It is a bit tricky –

the explanation mentions that the numbers have to be printed in reversed order. This means that the
initial value of the variable i will be bigger, and from the examples we can see that it is M. Thus, the
final value of i should be N. The fact that we will print the results in reversed order and the values of
i, suggests that the step would be decreased by 1.

After we have initialized the for loop, it is time for the third part of the problem – checking the
condition if the given number is divisible both by 2 and 3 without reminder. We will do this using one
simple if condition that we will leave to the reader to do by themselves.

Another tricky part of this problem is that apart from the above check we need to do another one –
whether the number is equal to the "stop" number entered from the console on the third line. To do
this check, the previous one has to be passed. For this reason, we will add another if statement that
we will nest in the previous one. If the condition is true, we need to stop the program from printing.
We can do this using a break operator, and it will lead us out of the for loop.

If the condition that checks whether the number is equal with "stop" number returns a false result,
our program should continue to print. This covers the fourth and last part of our program.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/515#2.

https://judge.softuni.org/Contests/Practice/Index/515#2

294 Programming Basics with C#

Problem: Special Numbers
Write a program that reads one integer number N and generates all possible special numbers from
1111 to 9999. To be considered special, a number must correspond to the following condition:

• N to be divisible by each of its digits without reminder.

Example: upon N = 16, 2418 is a special number:

• 16 / 2 = 8 without reminder

• 16 / 4 = 4 without reminder

• 16 / 1 = 16 without reminder

• 16 / 8 = 2 without reminder

Input Data

The input is read from the console and consists of one integer within the range [1 … 600 000].

Output Data

Print on the console all special numbers, separated by space.

Sample Input and Output

Input Output Comments

3
1111 1113 1131 1133 1311 1313 1331 1333 3111
3113 3131 3133 3311 3313 3331 3333

3 / 1 = 3 without reminder
3 / 3 = 1 without reminder
3 / 3 = 1 without reminder
3 / 3 = 1 without reminder

Hints and Guidelines

Solve the problem by yourself using what you learned from the previous two problems. Keep in mind
the difference between operators for integer division / and division with reminder % in C#.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/515#3.

Problem: Digits
Write a program that reads from the console an integer within the range [100 … 999], and then prints
it a predefined number of times – modifying it before each print, as follows:

• If the number is divisible by 5 without reminder, subtract from it its first digit.

• If the number is divisible by 3 without reminder, subtract from it its second digit

• If none of the above-mentioned conditions is valid, add to it its third digit.

Print on the console N lines, and each line has M numbers, that are result of the above actions.

• N = sum of the first and second digit of the number.

• M = sum of the first and third digit of the number.

https://judge.softuni.org/Contests/Practice/Index/515#3

Chapter 7.2. More Complex Loops – Exam Problems 295

Input Data

The input is read from the console and is an integer within the range [100 … 999].

Output Data

Print on the console all integer numbers, result of the above-mentioned calculations in the respective
number of rows and columns as in the examples.

Sample Input and Output

Input Output Comments

376

382 388 394 400 397 403 409 415 412
418 424 430 427 433 439 445 442 448
454 460 457 463 469 475 472 478 484
490 487 493 499 505 502 508 514 520
517 523 529 535 532 538 544 550 547
553 559 565 562 568 574 580 577 583
589 595 592 598 604 610 607 613 619
625 622 628 634 640 637 643 649 655
652 658 664 670 667 673 679 685 682
688 694 700 697 703 709 715 712 718

10 lines with 9 numbers in each
Input number 376 → neither 5,
nor 3 → 376 + 6 → = 382 → neither 5,
nor 3 → 382 + 6 = 388 + 6 = 394 + 6 =
400 → division by 5 → 400 - 3 = 397

Input Output Comments

132

129 126 123
120 119 121
123 120 119
121 123 120

(1 + 3) = 4 and (1 + 2) = 3 → 4 lines with 3 numbers in each
Input number 132 → division by 3 → 132 - 3 =
= 129 → division by 3 → 129 - 3 =
= 126 → division by 3 → 126 - 3 =
= 123 → division by 3 → 123 - 3 =
= 120 → division by 5 → 120 - 1 =
..... 121 → neither by 5, nor 3 → 121 + 2 = 123

Hints and Guidelines

Solve the problem by yourself, using what you learned from the previous ones. Remember that you
will need to define different variables for each digit of the input number.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/515#4.

https://judge.softuni.org/Contests/Practice/Index/515#4

https://softuni.org

Chapter 8.1. Practical Exam Preparation – Part I
In the present chapter we will examine a few problems with a level of difficulty that can be expected
in the problems of the practical exam in "Programming Basics". We will review and practice all the
knowledge that was gained from this book and through the "Programming Basics" course.

Video: Chapter Overview
Watch a video about what shall you learn in this chapter: https://youtu.be/t0eqL0SzIR4.

The "Programming Basics" Practical Exam
The course "Programming Basics" at SoftUni finishes with a practical exam. There are 6 problems
included, and you will have 4 hours to solve them. Each of the exam problems will cover one of the
topics studied during the course. Problem topics are from the following 6 groups:

• Problem with simple calculations (no conditions)

• Problem with simple condition (simple checks)

• Problem with more complex conditions (nested checks and multiple checks)

• Problem with a simple loop (e.g. iterate from 1 to N)

• Problem with nested loops (e.g. drawing a 2D figure on the console)

• Problem with nested loops and more complex logic (loops and checks together)

Video: The Practical Exam Explained

Watch this video to learn more about the practical exam, the problems, the evaluation and the
automated judge system: https://youtu.be/KPFk980HWhw.

The Online Evaluation System (Judge)

All exams and exercises from this book are automatically tested through the online Judge system:
https://judge.softuni.org. For each of the problems there are visible (zero point) tests to help you
understand what is expected of the problem and fix your mistakes, as well as competition tests that
are hidden and check if your solution is working properly. In the Judge system you can log in with
your softuni.org account.

How does the testing in the Judge system work? You upload / paste the source code of your solution
from the judge Web page and you choose to compile and run it as a C# program. The program is then
tested with a series of tests (input data + checks of the produced output), giving points for each
successful test. For each problem the Judge provides a separate code submission page, separate
evaluation tests and separate scoring (points).

Simple Calculations – Problems
The first problem of the "Programming Basics" Practical Exam covers simple calculations without
checks and loops. Participants in the exam should know how to write simple programs, use variables
and data, read and print numbers on the console and perform simple calculations. Let's solve a few
sample problems with simple calculations.

Problem: Triangle Area

The first sample exam problem is about calculating the area of given triangle, specified by its
coordinates (where the triangle stays horizontally).

https://youtu.be/t0eqL0SzIR4
https://youtu.be/KPFk980HWhw
https://judge.softuni.org/

298 Programming Basics with C#

Video: Triangle Area

Watch the video lesson about the triangle area problem: https://youtu.be/m2O8_rcNHtA.

Problem Description

Triangle in the plane is defined by the coordinates of its three vertices. First the vertex (x1, y1) is set.
Then the other two vertices are set: (x2, y2) and (x3, y3), which lie on a common horizontal line (i.e.
they have the same Y coordinates). Write a program that calculates the area of the triangle by the
coordinates of its three vertices.

Input

The console gives 6 integers (one per line): x1, y1, x2, y2, x3, y3.

• All input numbers are in range [-1000 … 1000].

• It is guaranteed that y2 = y3.

Output

Print on the console the area of the triangle.

Sample Input and Output

Input Output Visualization Comments

 5
-2
 6
 1
 1
 1

7.5

The side of the triangle:
a = 6 - 1 = 5
The height of the triangle:
h = 1 - (-2) = 3
Triangle area:
S = a * h / 2 = 5 * 3 / 2 = 7.5

Input Output Visualization Comments

 4
 1
-1
-3
 3
-3

8

The side of the triangle:
a = 3 - (-1) = 4
The height of the triangle:
h = 1 - (-3) = 4
Triangle area:
S = a * h / 2 = 4 * 4 / 2 = 8

Reading the Input Data

It is important in such types of tasks where some coordinates are given to pay attention to the order
in which they are submitted, and to properly understand which of the coordinates we will use and
how. In this case, the input is in order x1, y1, x2, y2, x3, y3. If we do not follow this sequence, the
solution becomes wrong. First, we write the code that reads the input data:

https://youtu.be/m2O8_rcNHtA

Chapter 8.1. Practical Exam Preparation – Part I 299

Calculate Triangle Side and Height

We have to calculate the side and the height of the triangle. From the pictures, as well as the condition
y2 = y3, we notice that the one side is always parallel to the horizontal axis. This means that its
length is equal to the length of the segment between its coordinates x2 and x3, which is equal to the
difference between the larger and the smaller coordinates. Similarly, we can calculate the height. It
will always be equal to the difference between y1 and y2 (or y3, as they are equal). Since we do not
know if x2 is greater than x3, or y1 will be below or above the triangle side, we will use the absolute

values of the difference to always get positive numbers, because one segment cannot have a negative
length.

Calculate and Print Triangle Area

we will calculate it using our familiar formula for finding an area of a triangle. An important thing to
keep in mind is that although we get only integers at an input, the area will not always be an integer.
That's why we use a variable of double type for the area. We have to convert the right side of the
equation, because if we give whole numbers as equation parameters, our result will also be an integer.

The only thing left is to print the area on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#0.

Problem: Moving Bricks

The next sample exam problem is to calculate how many trolleys courses are needed to move given
set of bricks (assuming the trolley has limited capacity).

Video: Moving Bricks

Watch the video lesson about solving the "Moving Bricks" problem: https://youtu.be/NuPQ0EPYjsI.

Problem Description

Construction workers have to transfer a total of x bricks. Workers are w and work simultaneously.
They transport the bricks in trolleys, each with a capacity of m bricks. Write a program that reads the
integers x, w, and m, and calculates what is the minimum number of courses the workers need to do
to transport the bricks.

Input

On the console 3 integers are given, one per line:

• The number of bricks x is read from the first line.

https://judge.softuni.org/Contests/Practice/Index/516#0
https://youtu.be/NuPQ0EPYjsI

300 Programming Basics with C#

• The number of workers’ w is read from the second line

• The capacity of the trolley m is read from the third line.

All input numbers are integers in the range [1 … 1000].

Output

Print on the console the minimum number of courses needed to transport the bricks.

Sample Input and Output

Input Output Comments

120
2
30

2

We have 2 workers, each transporting 30 bricks per course. In total,
workers are transporting 60 bricks per course. To transport 120 bricks,
exactly 2 courses are needed.

Input Output Comments

355
3
10

12

We have 3 workers, each transporting 10 bricks per course. In total,
workers are transporting 30 bricks per course. To transport 355 bricks,
exactly 12 courses are needed: 11 complete courses carry 330 bricks and
the last 12th course carries the last 25 bricks.

Input Output Comments

5
12
30

1

We have 5 workers, each transporting 30 bricks per course. In total,
workers are transporting 150 bricks per course. In order to transport 5
bricks, only 1 course is sufficient (although incomplete, with only 5 bricks).

Reading the Input Data

The input is standard, and we only need to be careful about the sequence in which we read the data.

Calculating Bricks per Course

We calculate how many bricks the workers transport in a single course:

Calculating and Printing the Needed Courses

By dividing the total number of bricks transported for 1 course, we will obtain the number of courses
required to carry them. We have to consider that when dividing whole numbers, the remainder is
ignored and always rounded down. To avoid this, we will convert the right side of the equation to
double and use the Math.Ceiling(…) function to round the result always up. When the bricks can
be transferred with an exact number of courses, the division will return a whole number and there
will be nothing to round. Accordingly, if not, the result of the division will be the number of exact
courses but a decimal fraction. The decimal part will be rounded up and we will get the required 1
course for the remaining bricks.

Chapter 8.1. Practical Exam Preparation – Part I 301

Finally, we print the result on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#1.

Simple Conditions – Problems
The second problem of the "Programming Basics" Practical Exam covers conditional statements and
simple calculations. Participants in the exam should know how to implement simple logic using the
if-else conditional statements, as well as how to read and write data from the console and perform
simple calculations. Let's solve a few sample problems with simple conditions.

Problem: Point on a Segment

The next sample exam problem is about checking whether given point stays inside or outside given
horizontal segment.

Video: Point on a Segment

Watch a video lesson about solving the "Point on a Segment" problem: https://youtu.be/isrSHqLvV90.

Problem Description

A horizontal segment is placed on a horizontal line, set with the x coordinates of both ends: first and
second. A point is located on the same horizontal line and is set with its x coordinate. Write a program
that checks whether the point is inside or outside the segment and calculates the distance to the
nearest end of the segment.

Input

The console reads 3 integer numbers (one per line):

• On the first line the number "first" is read – one end of the segment.

• On the second line the number "second" is read – the other end of the segment.

• On the third line the number "point" is read – the location of the point.

All input numbers are integers in the range [-1000 … 1000].

Output

Print the result on the console:

• On the first line, print "in" or "out" – whether the point is inside or outside the segment.

• On the second line, print the distance from the point to the nearest end of the segment.

Sample Input and Output

Input Output Visualization

10
5
7

 in
 2

https://judge.softuni.org/Contests/Practice/Index/516#1
https://youtu.be/isrSHqLvV90

302 Programming Basics with C#

Input Output Visualization

8
10
5

 out
 3

Input Output Visualization

1
-2
3

 out
 2

Reading the Input Data

We read the input from the console.

Calculate the Minimum Distance to the Closest End

Since we do not know which point is on the left and which is on the right, we will create two variables
to mark this. Since the left point is always the one with the smaller x coordinate, we will use
Math.Min(…) to find it. Accordingly, the right one is always the one with a larger x coordinate and

we will use Math.Max(…). We will also find the distance from point x to the two points. Because we
do not know their position relative to each other, we will use Math.Abs(…) to get a positive result.

The shorter of the two distances we can found using Math.Min(…).

Determining if Point is in or Out the Segment

What remains is to find whether the point is on or out of the line. The point will be on the line
whenever it matches one of the other two points or its x coordinate lies between them. Otherwise,
the point is outside the line. After checking, we display one of the two messages, depending on which
condition is satisfied.

Finally, we print the distance previously found.

Chapter 8.1. Practical Exam Preparation – Part I 303

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#2.

Problem: Point in a Figure

The next sample exam problem is about checking whether given point stays inside or outside given
figure (see the image below).

Video: Point in a Figure

Watch a video lesson about solving the "Point in a Figure"
problem: https://youtu.be/SzxHyZVdhEo.

Problem Description

Write a program that checks whether a point (with coordinates
x and y) is inside or outside the figure, shown on the right.

Input

The console reads two integers (one per line): x and y.

All input numbers are integers in the range [-1000 … 1000].

Output

Print on the console "in" or "out" – whether the point is inside or outside the figure (the outline is
inside).

Sample Input and Output

Input Output Input Output Input Output Input Output

 8
-5

in
 6

-3
in

 11
 -5

out
 11

 2
out

Hints and Guidelines

To find out if the point is in the figure, we will divide the figure into 2 rectangles:

A sufficient condition is the point to be located in one of them, in order to be in the figure.

Determining the Point Location

We read the input data from the console:

https://judge.softuni.org/Contests/Practice/Index/516#2
https://youtu.be/SzxHyZVdhEo

304 Programming Basics with C#

We will initialize two variables that will mark whether the point is in one of the rectangles.

When printing the message, we will check whether any of the variables has accepted a value of true.
It is enough only one of them to be true, so that the point is in the figure.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#3.

Complex Conditions – Problems
The third problem of the "Programming Basics" Practical Exam includes several nested checks
combined with simple calculations. Participants in the exam should know how to work with nested
if-else statements and how to use complex conditions, as well as how to read and print data from
the console and perform calculations.

Let's solve a few sample problems with complex conditions.

Problem: Date After 5 Days

The next sample exam problem is about calculating the date 5 days after given date (day + month),
having in mind that it might appear in the next month.

Video: Date After 5 Days

Watch a video lesson about solving the "Date After 5 Days" problem: https://youtu.be/01FEQP6r_xk.

Problem Description

There are two numbers d (day) and m (month) that form a date. Write a program that prints the date
that will be 5 days a particular date. For example, 5 days after 28.03 is the date 2.04. We assume that
the months: April, June, September and November have 30 days, February has 28 days, and the rest
have 31 days. Months to be printed with leading zero when they contain a single digit (e.g. 01, 08).

Input

The input is read from the console and consists of two lines:

• On the first line we read an integer d in the range [1 … 31] – day. The number of the day does
not exceed the number of days in that month (e.g. 28 for February).

• On the second line we read an integer m in the range [1 … 12] – month. Month 1 is January,
month 2 is February, …, month 12 is December. The month may contain a leading zero (e.g.
April may be written as 4 or 04).

Output

Print a single line containing the date after 5 days in the format day.month. The month must be a 2-
digit number with a leading zero (if necessary). The day must be printed without leading zero.

https://judge.softuni.org/Contests/Practice/Index/516#3
https://youtu.be/01FEQP6r_xk

Chapter 8.1. Practical Exam Preparation – Part I 305

Sample Input and Output

Input Output Input Output Input Output Input Output

 28
 03

2.04
 27
 12

1.01
 25
 1

30.01
 26
 02

3.03

Reading and Processing the Input Data

We take the input from the console.

To make our checks easier, we'll create a variable that will contain the number of days that we have
in the month we set.

Adding 5 Days

We are increasing the day by 5.

We check if the day has not exceeded the number of days in the month. If so, we must deduct the
days of the month from the obtained day in order to calculate which day of the next month our day
corresponds to.

After we have passed to the next month, this should be noted by increasing the initial one by 1. We
need to check if it has not become greater than 12 and if it has, to adjust it. Because we cannot skip
more than one month when we increase by 5 days, the following check is enough.

Printing the Result

The only thing that remains is to print the result on the console.

306 Programming Basics with C#

It is important to format the output correctly to display the leading zero in the first 9 months. This is
done by adding a formatting string :D2 after the second element.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#4.

Problem: Sums of 3 Numbers

The next sample exam problem is about checking multiple cases to find out if from given 3 numbers
we can find two of them which sum up to the third of them.

Video: Sum of 3 Numbers

Watch the following video lesson to learn how to solve the "Sum of 3 Numbers" problem step by
step: https://youtu.be/7NwKXOtbWXc.

Problem Description

There are 3 integers given. Write a program that checks if the sum of two of the numbers is equal to
the third one. For example, if the numbers are 3, 5 and 2, the sum of two of the numbers is equal to
the third one: 2 + 3 = 5.

Input

The console reads three integers, one per line. The numbers are in the range [1 … 1000].

Output

• Print a text line on the console containing the solution of the problem in the format
"a + b = c", where a, b and c are among the three input numbers and a ≤ b.

• If the problem has no solution, print "No" on the console.

Sample Input and Output

Input Output Input Output Input Output Input Output

3
5
2

2 + 3 = 5

 2
2
4

2 + 2 = 4
 1

1
5

No

 2
6
3

No

Reading the Input Data

We take the input from the console.

Composing a Template for the Solution

We can check if the sum of a pair of numbers is equal to the third number. We have 3 possible cases:

• a + b = c

https://judge.softuni.org/Contests/Practice/Index/516#4
https://youtu.be/7NwKXOtbWXc

Chapter 8.1. Practical Exam Preparation – Part I 307

• a + c = b

• b + c = a

We will write a template, which will later be complemented by the required code. If none of the above
three conditions is met, we will make our program print "No".

Writing Code in the Template

We now have to understand the order in which the two addends will be written in the output of the
program. For this purpose, we will create a nested condition that checks which one of the two
numbers is the larger one. In the first case, it will look like this:

Similarly, we will supplement the other two cases. The full code of the program will look like this:

308 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#5.

Simple Loops – Problems
The fourth problem of the "Programming Basics" Practical Exam includes a single loop with simple
logic in it. Participants in the exam should know how to work with simple for-loops and how to
implement simple program logic with loops, how to read and process a sequence of numbers from
the console and how to performs calculations and checks.

Let's solve a few sample problems with simple loops.

Problem: Sums with Step of 3

The next sample exam problem is about calculating 3 sums, holding the numbers from given sequence,
staying at certain positions with step 3.

Video: Sums with Step of 3

Watch a video lesson to learn how to solve the "Sums with Step of 3" problem using a for-loop with
several if-else statements inside: https://youtu.be/bRHFuNNBmZc.

Problem Description

https://judge.softuni.org/Contests/Practice/Index/516#5
https://youtu.be/bRHFuNNBmZc

Chapter 8.1. Practical Exam Preparation – Part I 309

We have given are n integers: a1, a2, …, an. Calculate the sums:

• sum1 = a1 + a4 + a7 + … (the numbers are summed, starting from the first one with step of 3).

• sum2 = a2 + a5 + a8 + … (the numbers are summed, starting from the second one with step 3).

• sum3 = a3 + a6 + a9 + … (the numbers are summed, starting from the third one with step of 3).

Input

The input data is read from the console. The first line holds an integer n (0 ≤ n ≤ 1000). On the next
n lines, we are given n integers in the range [-1000 … 1000]: a1, a2, …, an.

Output

On the console we should print 3 lines containing the 3 sums in a format such as in the example.

Sample Input and Output

Input Output

Input Output

Input Output

 4
 7
-2
 6
12

sum1 = 19
sum2 = -2
sum3 = 6

5
3
5
2
7
8

sum1 = 10
sum2 = 13
sum3 = 2

1
5

sum1 = 5
sum2 = 0
sum3 = 0

Reading the Input Data

We will take the count of numbers from the console and declare starting values of the three sums.

Since we do not know in advance how many numbers we will process, we will take them one at a time
in a loop which will be repeated n times and we will process them in the body of the loop.

Allocating Numbers and Printing Results

To find out in which of the three sums we need to add the number, we will divide its sequence number
into three and we will use the remainder. We will use the variable i, which tracks the number of runs
of the loop, in order to find out which sequence number we are at. When the remainder of i/3 is
zero, it means we will add this number to the first sum, when it is 1 to the second one, and when it is
2 to the third one.

310 Programming Basics with C#

Finally, we will print the result on the console in the required format.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#6.

Problem: Sequence of Increasing Elements

The next sample exam problem is about finding the longest increasing subsequence of given sequence
of integers.

Video: Sequence of Increasing Elements

Watch a video lesson about the "Sequence of Increasing Elements" problem and its solution:
https://youtu.be/4ZHRC4usRAM.

Problem Description

A series of n numbers is given: a1, a2, …, an. Calculate the length of the longest increasing sequence
of consecutive elements in the series of numbers.

Input

The input data is read from the console. The first line holds an integer n (0 ≤ n ≤ 1000). On the
following n lines, we are given n integers in the range [-1000 … 1000]: a1, a2, …, an.

Output

On the console we must print one number – the length of the longest increasing sequence.

Sample Input and Output

https://judge.softuni.org/Contests/Practice/Index/516#6
https://youtu.be/4ZHRC4usRAM

Chapter 8.1. Practical Exam Preparation – Part I 311

Input Output Input Output Input Output Input Output

3
5
2
4

2

 4
2
8
7
6

2

 4
1
2
4
4

3

 4
5
6
7
8

2

Reading the Input Data and Creating Working Variables

To solve this problem, we need to think in a bit more algorithmic way. A sequence of numbers is given
to us, and we need to check whether each subsequent one will be larger than the previous one, and
if so, we count how long is the sequence in which this condition is fulfilled. Then we have to find
which sequence of these is the longest one. To do this, let's create some variables that we will use
during solving the problem.

The variable n is the count of numbers we get from the console. In countCurrentLongest we will
keep the number of elements in the increasing sequence we are currently counting. For example, in
the sequence: 5, 6, 1, 2, 3 countCurrentLongest will be 2 when we reach the second element of
the counting (5, 6, 1, 2, 3) and will become 3 when we reach the last element (5, 6, 1, 2, 3), because
the increasing row 1, 2, 3 has 3 elements. We will use countLongest to keep the longest increasing
sequence. The other variables are a – the number we are currently in, and aPrev – the previous

number which we will compare with a to see if the row is growing.

Determining Increasing Sequence

We begin to run the numbers and check if the present number a is larger than the previous aPrev
one. If this is true, then the row is growing, and we need to increase its number by 1. This is stored in
the variable that tracks the length of the sequence we are currently in – countCurrentLongest. If
the number a is not greater than the previous one, it means that a new sequence starts, and we have
to start the count from 1. Finally, after all the checks are done, aPrev becomes the number we are
currently using, and we start the loop from the beginning with the next entered a.

Here is a sample implementation of the algorithm described:

312 Programming Basics with C#

Finding and Printing the Longest Sequence

What remains is to see which of all sequences is the longest one. We will do this by checking in the
loop if the sequence we are currently in has become longer than the longest one by now. The whole
loop will look like this:

Finally, we print the length of the longest sequence found.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#7.

Drawing Figures – Problems
The fifth problem of the "Programming Basics" Practical Exam requires using one or several nested
loops for drawing a figure on the console. Participants in the exam should know how to think logically
and construct simple algorithms using calculations, checks and nested loops to solve problems, i.e. to
think in an algorithmic way. This problem is more about algorithmic thinking than about coding and
loops. Let's solve a few sample problems with nested loops (and drawing figures).

Problem: Perfect Diamond

The next sample exam problem is about using nested loops and calculations to print on the console a
diamond of given size, like the ones shown below in the examples.

Video: Perfect Diamond

https://judge.softuni.org/Contests/Practice/Index/516#7

Chapter 8.1. Practical Exam Preparation – Part I 313

Watch the video lesson about the "Perfect Diamond" problem: https://youtu.be/UqQFpM_cgbY.

Problem Description

Write a program that reads an integer n from the console and draws a perfect diamond with size n as
in the examples below.

Input

The input is an integer n within the range [1 … 1000].

Output

The diamond should be printed on the console as in the examples below.

Sample Input and Output

Input Output Input Output Input Output Input Output

2
 *
-
 *

3

 *
 -
--*
 -
 *

4

 *
 -
 --*
--*-*
 --*
 -
 *

5

 *
 -
 --*
 --*-*
--*-*-*
 --*-*
 --*
 -
 *

Hints and Guidelines

In tasks for drawing figures, the most important thing to consider is the sequence in which we will
draw. Which items are repeated and with what steps? We can clearly see that the top and bottom
parts of the diamond are the same. The easiest way to solve the problem is by creating a loop that
draws the upper part, and then another loop that draws the bottom part (opposite to the top one).

Reading the Input Data

We will read the number n from the console.

Printing the Top Part of the Diamond

We start painting the top half of the diamond. We clearly see that each row starts with a few empty
spaces and *. If we take a closer look, we will notice that the empty spaces are always equal to n –
the number of lines (the first row is n-1, the second – n-2, etc.). We will start by drawing the number
of empty spaces, and the first asterisk. Let's not forget to use Console.
Write(…) instead of Console.WriteLine(…) to stay on the same line. At the end of the line we
write Console.WriteLine(…) to go to a new line. Notice that we start counting from 1, not from 0.
Next, we will only add a few times -* to finish the line.

Here is part of the code for the top of the diamond:

https://youtu.be/UqQFpM_cgbY

314 Programming Basics with C#

What remains is to complete each line with the required number of -* elements. On each row we
have to add i-1 such items (on the first 1-1 -> 0, the second -> 1, etc.)

Here is the complete code for drawing the top of the diamond:

Printing the Bottom Part of the Diamond

To draw the bottom part of the diamond, we have to reverse the upper part. We will count from n-
1, because if we start from n, we will draw the middle row twice. Do not forget to change the step
from ++ to --.

Here is the code for drawing the bottom part of the diamond:

What remains is to assemble the whole program by first reading the input, printing the top part of the
diamond and then the bottom part of the diamond.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#8.

Problem: Rectangle with Stars in the Center

The next sample exam problem is about using nested loops and calculations to print on the console a
rectangle of given size with stars in the middle, like the ones shown below in the examples.

Video: Rectangle with Stars in the Center

https://judge.softuni.org/Contests/Practice/Index/516#8

Chapter 8.1. Practical Exam Preparation – Part I 315

Watch the video lesson about solving the "Rectangle with Stars in the Center" problem step by step:
https://youtu.be/6cOJDJm6sNk.

Problem Description

Write a program that reads from the console an integer n and draws a rectangle with size n with two
asterisks is its center as in the examples below.

Input

The input is an integer n in the range [2 … 1000].

Output

The rectangle should be printed on the console as in the examples below.

Sample Input and Output

Input Output Input Output Input Output Input Output

2
%%%%
%**%
%%%%

3

%%%%%%
% %
% ** %
% %
%%%%%%

4

%%%%%%%%
% %
% ** %
% %
%%%%%%%%

5

%%%%%%%%%%
% %
% %
% ** %
% %
% %
%%%%%%%%%%

Reading the Input Data

We read the input data.

Printing the First and the Last Rows

The first thing we can easily notice is that the first and last rows contain 2 * n symbols %. We will
start with this and then draw the middle part of the rectangle.

Printing the Middle Rows

From the examples we see that the middle part of the figure always has odd number of rows. Note
that when an even number is set, the number of rows is equal to the previous odd number (2 -> 1, 4
-> 3, etc.). We create a variable that represents the number of rows that our rectangle will have and
correct it if the number n is even. Then we will draw a rectangle without the asterisks. Each row has
for the beginning and the end the symbol % and between them 2 * n - 2 empty spaces (the width is 2
* n and we subtract 2 for the two percent at the end). Do not forget to move the code for the last

line after the loop.

https://youtu.be/6cOJDJm6sNk

316 Programming Basics with C#

We can start and test the code so far. Everything without the two asterisks in the middle should work
correctly.

Adding Stars in the Center of the Rectangle

Now, in the body of the loop let's add the asterisks. We'll check if we're on the middle row. If we are
in the middle, we will draw the row together with the asterisks, if not – we will draw a normal row.
The line with the asterisks has n-2 empty spaces (n is half the length and we remove the asterisk and
the percentage), two stars and again n-2 empty spaces. We leave out of the check the two percent
at the beginning and at the end of the row.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#9.

Nested Loops – Problems
The last (sixth) problem of the "Programming Basics" Practical Exam requires using of several nested
loops and more complex logic inside them. The problems examine participants' ability to think in an
algorithmic way and to solve non-trivial coding problems that require nested loops with more complex
logic and calculations, along with reading and printing data on the console.

https://judge.softuni.org/Contests/Practice/Index/516#9

Chapter 8.1. Practical Exam Preparation – Part I 317

Let's solve a few sample problems with nested loops and more complex logic.

Problem: Increasing 4 Numbers

The next sample exam problem is about using nested loops and program logic to generate all possible
combinations of 4 increasing numbers in given range.

Video: Increasing 4 Numbers

Watch the following video lesson to learn how to solve the "Increasing 4 Numbers" problem:
https://youtu.be/2DuNHqmbP5Y.

Problem Description

For given pair of numbers a and b generate all four number n1, n2, n3, n4, for which
a ≤ n1 < n2 < n3 < n4 ≤ b.

In combinatorics such a selection of subset from given set (or range) is called "combination"
(https://en.wikipedia.org/wiki/Combination), so the problem is essence is to generate all combinations
of 4 elements from given range of integers.

Sample Input and Output

Input Output Input Output Input Output

3
7

3 4 5 6
3 4 5 7
3 4 6 7
3 5 6 7
4 5 6 7

5
7

No

10
13

10 11 12 13

Input

The input contains two integers a and b in the range [0 … 1000], one per line.

Output

The output contains all numbers in batches of four, in ascending order, one per line.

Reading the Input Data

We will read the input data from the console. We also create the additional variable count, which will

keep track of existing number ranges.

Implementation with 2 Numbers

We will most easily solve the problem if we logically divide it in parts. If we are required to draw all
the rows from a number between a and b, we will do it using one loop that takes all the numbers from
a to b. Let's think how to do this with series of two numbers. The answer is easy – we will use nested
loops like this:

https://youtu.be/2DuNHqmbP5Y
https://en.wikipedia.org/wiki/Combination
https://en.wikipedia.org/wiki/Combination

318 Programming Basics with C#

We can test the incomplete program to see if it's accurate so far. It must print all pairs of numbers i,
j for which i ≤ j.

Since each next number of the row must be greater than the previous one, the second loop will run
around i + 1 (the next greater number). Accordingly, if there is no sequence of two incremental
numbers (a and b are equal), the second loop will not be fulfilled, and nothing will be printed on the
console.

Implementation with 4 Numbers

Similarly, what remains is to implement the nested loops for four numbers. We will add an increase
of the counter that we initialized in order to know if there is such a sequence.

Finally, we check if the counter is equal to 0 and we will print "No" on the console accordingly, if so.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#10.

Problem: Generating Rectangles

The next sample exam problem is about using nested loops and program logic to generate all possible

rectangles, which have integer coordinates in given range and given minimum area.

https://judge.softuni.org/Contests/Practice/Index/516#10

Chapter 8.1. Practical Exam Preparation – Part I 319

Video: Generating Rectangles

Watch a video about solving the "Generating Rectangles" problem: https://youtu.be/gk1IOpMXpCc.

Problem Description

By a given number n and a minimum area m, generate all possible rectangles with integer coordinates
in the range [-n…n] with an area of at least m. The generated rectangles must be printed in the
following format:

• (left, top) (right, bottom) -> area

Rectangles are defined using the top left and bottom right corner. The following inequalities are in
effect:

• -n ≤ left < right ≤ n

• -n ≤ top < bottom ≤ n

Sample Input and Output

Input Output Input Output Input Output

1
2

(-1, -1) (0, 1) -> 2
(-1, -1) (1, 0) -> 2
(-1, -1) (1, 1) -> 4
(-1, 0) (1, 1) -> 2
(0, -1) (1, 1) -> 2

 2
 17

No

 3
 36

(-3, -3) (3, 3) -> 36

Input

Two numbers, one per line, are entered from the console:

• An integer n in the range [1 … 100] – sets the minimum and maximum coordinates of a peak.

• An integer m in the range [0 … 50 000] – sets the minimum area of the generated rectangles.

Output

• The described rectangles should be printed on the console in a format such as in the examples
below.

• If there are no rectangles for the specified n and m, then print "No".

• The order of rectangles in the output is not important, so use and order of your choice.

Reading the Input Data

Read the input data from the console. We will also create a counter, which will store the number of
rectangles found.

Sample Idea for the Solution

It is very important to be able to imagine the problem before we begin to solve it. In our case it is
required to search for rectangles in a coordinate system. The thing we know is that the left point will
always have the coordinate x, smaller than the right one. Accordingly, the upper one will always have

https://youtu.be/gk1IOpMXpCc

320 Programming Basics with C#

a smaller y coordinate than the lower one. To find all the rectangles, we'll have to create a loop similar
to the previous problem, but this time, not every next loop will start from the next number because
some of the coordinates can be equal (for example left and top).

With the variables left and right we will follow the coordinates horizontally and with top and
bottom – vertically.

Calculating the Rectangle Area and Printing the Output

The important thing here is knowing the corresponding coordinates so we can correctly calculate the
sides of the rectangle. Now we have to find the area of the rectangle and check if it is greater than or
equal to m. One side will be the difference between left and right and the other one – between

top and bottom. Since the coordinates may be eventually interchanged, we will use absolute values.
Again, we add the counter in the loop, counting only the rectangles we write. It is important to note
that the writing order is left, top, right, bottom, as it is set in the problem's description.

Chapter 8.1. Practical Exam Preparation – Part I 321

Finally, we print "No" if there are no such rectangles.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/516#11.

Practical Exam Preparation – Summary
The "Programming Basics" final exam consists of 6 problems for 4 hours. Each of the exam problems
will cover one of the topics studied in the previous chapters. The 6 problems are from the following
6 categories:

• Problem with simple calculations (no conditions)

• Problem with simple condition (simple checks)

• Problem with more complex conditions (nested checks and multiple checks)

• Problem with a simple loop (e.g. iterate from 1 to N)

• Problem with nested loops (e.g. drawing a 2D figure on the console)

• Problem with nested loops and more complex logic (loops and checks together)

Video: Chapter Summary

Watch a video about what we have learned in this chapter: https://youtu.be/p4J22J04K_E.

https://judge.softuni.org/Contests/Practice/Index/516#11
https://youtu.be/p4J22J04K_E

https://softuni.org

Chapter 8.2. Practical Exam Preparation – Part II
In the current chapter we will review a practical exam in “Programming Basics” conducted at SoftUni
on December 18, 2016. The problems will give you a good overview of what you can expect at an
admission exam in Programming at SoftUni. The exam covers the material studied in the current book
and the Programming Basics course at SoftUni (https://softuni.org/curriculum).

Types of Exam Problems
Traditionally, the admission exam at SoftUni consists of 6 practical problems in programming of the
following types:

• Simple problems (no conditions).

• A problem with a single condition.

• A problem with more complex conditions.

• A problem with a single loop.

• A problem with nested loops (drawing a figure on the console).

• A problem with nested loops and more complex logic.

Let's examine a real exam topic: the 6 exam problems and their solutions.

Problem: Distance
Write a program that calculates what is the distance passed by a car (in kilometers), if we know the
initial speed (km/h), the initial time frame in minutes, then the speed is increased by 10%, the second
time frame, then the speed is decreased by 5%, and the time until the end of the trip. In order to
calculate the distance, you need to convert the minutes into hours (e.g. 70 minutes = 1.1666 hours).

Input Data

The input comes from the console and consists of 4 lines:

• The initial speed in km/h – an integer within the range [1 … 300].

• The first time frame in minutes – an integer within the range [1 … 1000].

• The second time frame in minutes – an integer within the range [1 … 1000].

• The third time frame in minutes – an integer within the range [1 … 1000].

Output Data

Print a number on the console: the kilometers passed, formatted up to the second digit after the
decimal point.

Sample Input and Output

Input Output Comments

90
60
70
80

330.90

Distance with initial speed: 90 km/h * 1 hour (60 min) = 90 km
After speed increase: 90 + 10% = 99.00 km/h * 1.166 hours (70 min) =
115.50 km
After speed decrease: 99 - 5% = 94.05 km/h * 1.33 hours (80 min) =
125.40 km
Total number of km passed: 330.9 km

https://softuni.org/curriculum

324 Programming Basics with C#

Input Output Comments

140
112
75

190

917.12

Distance with initial speed: 140 km/h * 1.86 hours (112 min) = 261.33 km
After speed increase: 140 + 10% = 154.00 km/h * 1.25 hours (75 min) =
192.5 km
After speed decrease: 154.00 - 5% = 146.29 km/h * 3.16 hours (190 min)
= 463.28 km
Total number of km passed: 917.1166 km

Hints and Guidelines

It is possible that such a description may look misleading and incomplete at first glance, which
adds to the complexity of a relatively easy task. Let's separate the problem into a few sub-problems
and try to solve each of them one by one, which will lead us to the final result:

• Our initial sub-problem will be to read the input data entered by the user and store them in
appropriate variables.

• Execution of the main programming logic, which in our case is a batch of simple calculations of
the properties that we already have.

• Calculation and shaping up the end result.

The main part of the programming logic is to calculate what will be the distance passed after all
changes in speed. As during execution of the program, part of the data that we have is modified, we
could separate the program code into a few logically separated parts:

• Calculation of the distance passed with initial speed.

• Change of speed and calculation of the distance passed.

• Last change of speed and calculation.

• Summing up.

Reading the Input Data

We use the following function to read the data from the console:

By definition, the input data is given as four separate lines. This is why we need to execute the
previous code four times in total.

Selecting Data Type for Calculations

In order to perform the calculations, we select decimal type.

The data type for real numbers with decimal representation in C# is the 128-bit
decimal type. It has the accuracy of 28 to 29 decimal numbers. Its minimum value
is -7.9×10^28, and its maximum value is +7.9×10^28. Its default value is 0.0m or
0.0M. The m symbol at the end explicitly indicates that the number is decimal type

Chapter 8.2. Practical Exam Preparation – Part II 325

(by default all real numbers are double type). The numbers closest to 0 that can be
stored in decimal are ±1.0 × 10^-28. It is evident that decimal cannot store very
large positive and negative numbers (for example with hundreds of digits), nor values
very close to 0. On the other hand, this type rarely causes any errors upon financial
calculations because it represents the numbers as a sum of the power of the number
10, upon which the round-off errors are much less compared to when we use binary
representation. Real numbers of decimal type are exceptionally suitable for

monetary calculations – calculation of incomes, liabilities, taxes, interest, etc.

This way we solved successfully the first sub-problem.

Converting the Input Data

The next step is to convert the input data into appropriate types, in order to be able to perform the
needed calculations. We select Int32 or int as an appropriate type, because the condition of the
problem says that the input data must be within a particular range, for which this data type is
completely sufficient. We will do the conversion in the following way:

Helper Variable

We initially store one variable that will be used multiple times. This centralization approach gives us
flexibility and possibility to modify the end result of the program with minimum efforts. In case we
need to change the value, we must do it in only once place in the code, which saves us time and
effort.

Avoiding repetitive code (centralization of the program logic) in the tasks that we
examine in the present book may look unnecessary at first glance, but this approach is
very important upon building large applications in a real work environment, and its
exercising in an initial stage of training will help you build a quality programming style.

Calculating Travel Distance

We calculate the travel time (in hours) by dividing the time by 60 (minutes in an hour). The travel
distance is calculated by multiplying the starting speed by the time passed (in hours). After that we
change the speed by increasing it by 10%, as per the task description. Calculating the percentage, as
well as the following distances passed, is done in the following way:

• The time frame (in hours) is calculated by dividing the provided time frame in minutes by the
minutes that are contained in an hour (60).

• The distance passed is calculated by multiplying the time frame (in hours) by the speed that is
obtained after the increase.

• The next step is to decrease the speed by 5%, as per the problem description.

• We calculate the remaining distance in the manner described in the first two points.

This is sample code, which implements the above described steps:

326 Programming Basics with C#

Calculating and Printing the Output

Up until now we were able to solve two of the most important sub-problems, namely the data input
and their processing. What remains is to calculate the end result. As by the description we are required
to format it up to 2 symbols after the decimal point, we can do this in the following manner:

If you worked accurately and wrote the program using the input data given in the task description,
you will be convinced that it works properly.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#0.

Problem: Changing Tiles
Harry has some savings that he wants to use to change the tiles on the bathroom floor. The floor is
rectangular, and the tiles are triangular. Write a program that calculates if his savings will be sufficient.
Read from the console the width and length of the floor, as well as one of the sides of the triangle
with its height towards it. We must calculate how many tiles are needed, in order to cover the floor.
The number of tiles must be rounded up to the higher integer and 5 more tiles must be added as
spare tiles. Also read from the console – the price per tile and the amount paid for the work of a
workman. All prices and money calculations are performed in lv (Bulgarian levs, BGN).

Input Data

The following 7 lines must be read from the console:

• Savings.

• Floor width.

• Floor length.

• Side of the rectangle.

• Height of the rectangle.

• Price of a tile in lv (Bulgarian levs, BGN).

• Fee to be paid to the workman.

All numbers must be real numbers within the range [0.00 … 5000.00].

Output Data

The following must be printed on the console as a single line:

https://judge.softuni.org/Contests/Practice/Index/517#0

Chapter 8.2. Practical Exam Preparation – Part II 327

• If the money is sufficient: “{Remaining funds} lv left.”

• If the money IS NOT sufficient: “You'll need {Insufficient funds} lv more.”

The result must be formatted up to the second digit after the decimal point.

Sample Input and Output

Input Output Comments

 500
 3
 2.5
 0.5
 0.7
 7.80
 100

25.60 lv left.

Floor area → 3 * 2.5 = 7.5
Tile area → 0.5 * 0.7 / 2 = 0.175
Needed tiles → 7.5 / 0.175 = 42.857… = 43 + 5 spare tiles = 48
Total amount → 48 * 7.8 + 100 (workman) = 474.4
474.4 < 500 → 25.60 lv left

Input Output Comments

1000
5.55
8.95
0.90
0.85
13.99
321

You'll need 1209.65
lv more.

Floor area → 5.55 * 8.95 = 49.67249
Tile area → 0.9 * 0.85 / 2 = 0.3825
Needed tiles → 49.67249 / 0.3825 = 129.86… = 130 + 5
spare tiles = 135
Total amount → 135 * 13.99 + 321 (workman) = 2209.65
2209.65 > 1000 → 1209.65 lv are insufficient

Hints and Guidelines

The following task requires our problem to accept more input data and to perform a larger number of
calculations, despite the fact that the solution is identical. Accepting the input data is done in the
familiar way. Pay attention that the Input part of the condition states that all input data must be in
real numbers, and for that reason we would use decimal type.

Now that we already have everything for executing the programming logic, we can move to the
following part. How can we calculate what is the needed number of tiles that will be sufficient to
cover the entire floor? The requirement is that tiles have triangular shape, which can cause confusion,
but practically, the task needs just simple calculations. We can calculate the common part of the floor
by the formula for finding rectangle area, as well as the area of a single tile using the relevant formula
for triangle area.

In order to calculate the number of tiles that are needed, we divide the floor area by the area of a
single tile (we should not forget to add the 5 additional tiles, that were mentioned in the requirements).

Pay attention that the requirements state that we should round up the number of
tiles, obtained upon the division, up to the higher number, and then we should add 5.
Find more information about the system function that does that: Math.Ceiling(…).

We can find the end result by calculating the total amount that is needed to cover the entire floor, by
summing up the tile price and the price that will be paid to the workman, that we have from the input
data. We can figure out that the total costs for tiles can be calculated by multiplying the number of
tiles by the price per tile. We fill find out whether the amount that we have will be sufficient by
comparing the savings (based on the input data) and the total costs.

328 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#1.

Problem: Flowers Shop
A flowers shop offers 3 types of flowers: chrysanthemums, roses and tulips. The prices depend on
the season.

Season Chrysanthemums Roses Tulips

spring / summer 2.00 USD/pc 4.10 USD/pc 2.50 USD/pc

autumn / winter 3.75 USD/pc 4.50 USD/pc 4.15 USD/pc

On holidays, prices of all flowers are increased by 15%. The following discounts are offered:

• For purchasing more than 7 tulips in spring – 5% of the price of the whole bouquet.

• For purchasing 10 or more roses in winter – 10% of the price of the whole bouquet.

• For purchasing more than 20 flowers in total in any season – 20% of the price of the whole
bouquet.

Discounts are made in the above described order and can be combined! All discounts are valid after
increasing of the price on a holiday!

The price for arranging a bouquet is always 2 USD. Write a program that calculates the price of a
bouquet.

Input Data

The input is read from the console and contains exactly 5 lines:

• The first line holds the number of purchased chrysanthemums – an integer in range [0 … 200].

• The second line holds the number of purchased roses – an integer within the range [0 … 200].

• The third line holds the number of purchased tulips – an integer within the range [0 … 200].

• The fourth line indicates the season – [Spring, Summer, Autumn, Winter].

• The fifth line specifies if the day is a holiday – [Y = yes / N = no].

Output Data

Print on the console 1 number – the price of flowers, formatted up to the second digit after the
decimal point.

Sample Input and Output

Input Output Comments

2
4
8
Spring
Y

46.14

Price: 2*2.00 + 4*4.10 + 8*2.50 = 40.40 USD
Holiday: 40.40 + 15% = 46.46 USD
5% discount for more than 7 tulips in spring: 44.14
The flowers are in total 20 or less: no discount

 44.14 + 2 for arranging the bouquet = 46.14 USD

https://judge.softuni.org/Contests/Practice/Index/517#1

Chapter 8.2. Practical Exam Preparation – Part II 329

Input Output Comments

3
10
9
Winter
N

69.39

Price: 3*3.75 + 10*4.50 + 9*4.15 = 93.60 USD
Not a holiday: no increase in price
10% discount for 10 or more roses in winter: 84.24
The flowers are in total over 20: 20% discount = 67.392

 67.392 + 2 for arranging the bouquet = 69.392 USD

Hints and Guidelines

We will divide the problem into smaller sub-problems, as described below.

Separating the Constant Values in Variables

After carefully reading the requirements, we understand that once again we need to do simple
calculations, however this time we will need additional logical conditions. We need to pay more
attention to the moment of making changes in the final price, in order to be able to properly build the
logic of our program. Again, the bold text gives us sufficient guidelines on how to proceed. For a start,
we will separate the already defined values in variables, like we did in the previous tasks:

We will also do the same for the rest of the defined values:

Reading the Input Data

Our next sub-task is to read properly the input data from the console. We will do that in the familiar
way, but this time we will combine two separate functions – one for reading a line from the console
and another one for its conversion into a numeric data type:

330 Programming Basics with C#

Preparing the Program Logic

Let's think of the most appropriate way to structure our programming logic. By the requirements it
becomes clear that the path of the program is divided mainly into two parts: spring / summer and
autumn / winter. We can do the separation by conditional statement, by storing variables in advance
for the prices of the individual flowers, as well as for the end result.

What remains is to perform a few checks regarding the discounts of the different types of flowers,
depending on the season, and to modify the end result.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#2.

Problem: Grades
Write a program that calculates statistics for grades in an exam. At the beginning, the program reads
the number of students who attended the exam and for each student – their grade. At the end, the
program must print the percentage of students that have grades between 2.00 and 2.99, between
3.00 and 3.99, between 4.00 and 4.99, 5.00 or more, as well as the average grade of the exam.

Note: we use the Bulgarian grading system, where the grade scale starts from 2.00 (Fail) and ends at
6.00 (Excellent): https://en.wikipedia.org/wiki/Grading_systems_by_country#Bulgaria.

Input Data

Read from the console a sequence of numbers, each on a separate line:

• On the first line – the number of students who attended the exam – an integer within the range
[1 … 1000].

• For each individual student on a separate line – the grade on the exam – a real number within
the range [2.00 … 6.00].

https://judge.softuni.org/Contests/Practice/Index/517#2
https://en.wikipedia.org/wiki/Grading_systems_by_country#Bulgaria

Chapter 8.2. Practical Exam Preparation – Part II 331

Output Data

Print on the console 5 lines that hold the following information:

• "Top students: {percentage of students with grade of 5.00 or more}%".

• "Between 4.00 and 4.99: {between 4.00 and 4.99 included}%".

• "Between 3.00 and 3.99: {between 3.00 and 3.99 included}%".

• "Fail: {less than 3.00}%".

• "Average: {average grade}".

The results must be formatted up to the second digit after the decimal point.

Sample Input and Output

Input Output Comments

 6
 2
 3
 4
 5
 6
 2.2

Top students: 33.33%
Between 4.00 and 4.99: 16.67%
Between 3.00 and 3.99: 16.67%
Fail: 33.33%
Average: 3.70

5 or more: 2 students = 33.33% of 6
Between 4.00 and 4.99: 1 student = 30% of 6
Between 3.00 and 3.99: 1 student = 20% of 6
Below 3: 2 students = 20% of 6
The average grade is: 2 + 3 + 4 + 5 + 6 + 2.2 =
22. 2 / 6 = 3.70

Input Output Comments

10
3.00
2.99
5.68
3.01
4
4
6.00
4.50
2.44
5

Top students: 30.00%
Between 4.00 and 4.99: 30.00%
Between 3.00 and 3.99: 20.00%
Fail: 20.00%
Average: 4.06

5 or more: 3 students = 30% of 10
Between 4.00 and 4.99: 3 students = 30% of 10
Between 3.00 and 3.99: 2 students = 20% of 10
Below 3: 2 students = 20% of 10
The average grade is: 3 + 2.99 + 5.68 + 3.01 + 4
+ 4 + 6 + 4.50 + 2.44 + 5 = 40.62 / 10 = 4.062

Hints and Guidelines

We will divide the problem into smaller sub-problems, as described below.

Reading the Input Data and Creating Helper Variables

By requirements we see that first we will read the number of students, and then, their grades. For
that reason, firstly in an int variable we will read the number of students. In order to read and process

the grades themselves, we will use a for loop. The value of the int variable will be the end value of
the i variable from the loop. This way, all iterations of the loop will read each one of the grades.

332 Programming Basics with C#

Before executing the code of the for loop, we will create variables where we will store the number
of students for each group: poor results (up to 2.99), results from 3 to 3.99, from 4 to 4.99 and grades
above 5. We will also need one more variable, where we will store the sum of all grades, via which
we will calculate the average grade of all students.

Allocating Students into Groups

We run the loop and inside it we declare one more variable, in which we will store the currently
entered grade. The variable will be double type and upon each iteration we will check what is its
value. According to this value, we increase the number of students in the relevant group by 1, as we
should not forget to also increase the total amount of the grades, which we also track.

We can calculate what percentage is taken by a particular group of students from the total number
by multiplying the number of students in the relevant group by 100 and then dividing this by the total
number of students.

Pay attention to the numeric data type that you work with upon doing these calculations.

The end result is formed in the well know fashion – up to the second digit after the decimal point.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#3.

Problem: Christmas Hat
Write a program that reads from the console an integer n and draws a Christmas hat with width of 4
* n + 1 columns and height of 2 * n + 5 rows, as in the examples below.

Input Data

The input is read from the console – an integer n within the range [3 … 100].

Output Data

Print on the console a Christmas hat, exactly like in the examples.

https://judge.softuni.org/Contests/Practice/Index/517#3

Chapter 8.2. Practical Exam Preparation – Part II 333

Sample Input and Output

Input Output Input Output

4

......./|\.......

.......\|/.......

.......***.......

......*-*-*......

.....*--*--*.....

....*---*---*....

...*----*----*...

..*-----*-----*..

.*------*------*.
--------------*

..*.*.*.*.*.*.*

7

............./|\.............

.............\|/.............

.............***.............

............*-*-*............

...........*--*--*...........

..........*---*---*..........

.........*----*----*.........

........*-----*-----*........

.......*------*------*.......

......*-------*-------*......

.....*--------*--------*.....

....*---------*---------*....

...*----------*----------*...

..*-----------*-----------*..

.*------------*------------*.
--------------------------*

..*.*.*.*.*.*.*.*.*.*.*.*.*

Problem Analysis

In tasks requiring drawing on the console, most often the user inputs an integer that is related to the
total size of the figure that we need to draw. As the task requirements mention how the total length
and width of the figure are calculated, we can use them as starting points. In the examples it is clear
that regardless of the input data, we always have first two rows that are almost identical.

......./|\.......

.......\|/.......

We also notice that the last three rows are always present, as two of them are completely the same.

..*.*.*.*.*.*.*

By these observations we can come up with the formula for the height of the variable part of the
Christmas hat. We use the formula specified in the task to calculate the total height, by subtracting
the size of the unchangeable part. We obtain (2 * n + 5) – 5 or 2 * n.

Drawing the Dynamic Part of the Figure

To draw the dynamic or the variable part of the figure, we will use a loop. The size of the loop will be
from 0 to the width that we have by requirements, namely 4 * n + 1. Since we will use this formula
in a few places in the code, it is a good practice to declare it in a separate variable. Before running the
loop, we should declare variables for the number of individual symbols that participate in the dynamic
part: dots and dashes. By analyzing examples, we can also prepare formulas for the starting values of
these variables. Initially, the dashes are 0, but it is clear that we can calculate the number of dots by

334 Programming Basics with C#

subtracting 3 from the total width (the number of symbols that are building the top of the Christmas
hat) and then dividing by 2, as the number of dots on both sides of the hat is the same.

.......***.......

......*-*-*......

.....*--*--*.....

....*---*---*....

...*----*----*...

..*-----*-----*..

.*------*------*.
--------------*

What remains is to execute the body of the loop, as after each drawing we decrease the number of
dots by 1 and increase the number of dashes by 1. Let's not forget to draw one star between each of
them. The sequence of drawing in the body of the loop is the following:

• Symbol string of dots

• Star

• Symbol string of dashes

• Star

• Symbol string of dashes

• Star

• Symbol string of dots

In case we have worked properly, we will obtain figures identical to those in the examples.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#4.

Problem: Letters Combination
Write a program that prints on the console all combinations of 3 letters within a specified range, by
skipping the combinations containing certain letter. Finally, print the number of printed combinations.

Sample Input and Output

Input Output Comments

a
c
b

aaa aac aca acc caa
cac cca ccc 8

All possible combinations with letters 'а', 'b' and 'c' are:
aaa aab aac aba abb abc aca acb acc baa bab bac bba bbb bbc bca
bcb bcc caa cab cac cba cbb cbc cca ccb ccc
The combinations containing 'b' are not valid.
8 valid combinations remain.

Input Output

a
c
z

aaa aab aac aba abb abc aca acb acc baa bab bac bba bbb bbc bca bcb bcc caa cab
cac cba cbb cbc cca ccb ccc 27

https://judge.softuni.org/Contests/Practice/Index/517#4

Chapter 8.2. Practical Exam Preparation – Part II 335

Input Output

f
k
h

fff ffg ffi ffj ffk fgf fgg fgi fgj fgk fif fig fii fij fik fjf fjg fji fjj fjk fkf fkg fki fkj fkk gff gfg gfi
gfj gfk ggf ggg ggi ggj ggk gif gig gii gij gik gjf gjg gji gjj gjk gkf gkg gki gkj gkk iff ifg ifi ifj
ifk igf igg igi igj igk iif iig iii iij iik ijf ijg iji ijj ijk ikf ikg iki ikj ikk jff jfg jfi jfj jfk jgf jgg jgi jgj
jgk jif jig jii jij jik jjf jjg jji jjj jjk jkf jkg jki jkj jkk kff kfg kfi kfj kfk kgf kgg kgi kgj kgk kif kig
kii kij kik kjf kjg kji kjj kjk kkf kkg kki kkj kkk 125

Input Data

The input is read from the console and contains exactly 3 lines:

• A small letter from the English alphabet for a beginning of the range – between 'a' and 'z'.

• A small English letter for the end of the range – between the first letter and 'z'.

• A small English letter – from 'a' to 'z' – as the combinations containing this letter are skipped.

Output Data

Print on a single line all combinations corresponding to the requirements, followed by their number,
separated by a space.

Reading the Input Data

By requirements, we have input data on 3 lines, each of which is represented by one character of the
ASCII table (http://www.asciitable.com). We could use an already defined function in C#, by
converting the input data into char data type, as follows:

Printing All Characters from Start to End

Let's think of how we can achieve the end result. In case the task requirement is to print all charactars,
from the starting to the end one (by skipping a particular letter), what should we do?

The easiest and most efficient way is to use a loop, by passing through all characters and printing
those that are different from the letter that we need to skip. One of the advantages of C# is that we
have the opportunity to use a different data type for a loop variable:

The result of running the code is all letters from a to z included, printed on a single line and separated
by spaces. Does this look like the end result of our task? We must find a way to print 3 characters, as
required, instead of 1. Running such a program very much looks like a slot machine. We often win in
slots, if we arrange a few identical characters on a row. Let's say that the machine has space for three
characters. When we stop on a particular character on the first place, the other two places will
continue rolling characters among all possible ones. In our case, all possible characters are the letters
from the starting to the end one, entered by the user, and the solution of our program is identical to
the way a slot machine works.

Printing Combination of 3 Characters

http://www.asciitable.com/

336 Programming Basics with C#

We use a loop that runs through all characters from the starting to the end letter (included). On each
iteration of the first loop, we run a second one with the same parameters (but only if the letter of the
first loop is valid, i.e. does not match the one that we must exclude, by requirements). In each iteration
of the second loop, we run one more with the same parameters and the same condition. This way we
have three nested loops, as we will print the characters in the body of the latter.

Let's not forget that we also need to print the total number of valid combinations that we have found,
and they must be printed on the same line, separated by a space.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/517#5.

https://judge.softuni.org/Contests/Practice/Index/517#5

Chapter 9.1. Problems for Champions – Part I
In this chapter, we will offer the reader a few more difficult tasks that aim to develop algorithmic skills
and acquire programming techniques to solve tasks with higher complexity.

More Complex Problems on the Studied Material
We will solve together several programming problems that cover the material studied in the book, but
more difficult than the usual problems of the entrance exams at SoftUni. If you want to become a
champion on the basics of programming, we recommend training to solve such complex tasks to make
it easy for you to take exams.

Problem: Crossing Sequences
We have two sequences:

• a sequence of Tribonacci (by analogy with the Fibonacci sequence), where each number is the
sum of the previous three (with given three numbers)

• a sequence generated by a numerical spiral defined by looping like a spiral (right, bottom, left,
top, right, bottom, left, top, etc.) of a matrix of numbers starting from its center with a given
starting number and incremental step, by storing the current numbers in the sequence each
time we make a turn

Write a program that finds the first number that appears in both sequences defined in the afore-
mentioned way.

Example

Let the Tribonacci sequence start with 1, 2 and 3. This means that
the first sequence will contain the numbers 1, 2, 3, 6, 11, 20, 37,
68, 125, 230, 423, 778, 1431, 2632, 4841, 8904, 16377, 30122,
55403, 101902, and so on.

At the same time, let the numbers in the spiral begin with 5 and the
spiral increases by 2 at each step.

Then the second sequence will contain the numbers 5, 7, 9, 13, 17,
23, 29, 37 and so on. We see that 37 is the first number to be
found in the Tribonacci sequence and in the spiral one, and that is
the desired solution to the problem.

Input Data

Input data should be read from the console.

• On the first three lines of the input we will read three integers, representing the first three
numbers in the Tribonacci sequence, positive non-zero numbers, sorted in ascending order.

• On the next two lines of the input we will read two integers representing the first number and
the step for each cell of the matrix for the spiral of numbers. The numbers representing the
spiral are positive non-zero numbers.

Input data will always be valid and will always be in the format described. No need to check.

Output Data

The result should be printed on the console.

338 Programming Basics with C#

On the single line of the output, we must print the smallest number that occurs in both sequences. If
there is no number in the range [1 … 1 000 000], which can be found in both sequences, print "No".

Constraints

• All numbers in the input will be in the range [1 … 1 000 000].

• Allowed program time: 0.3 seconds.

• Allowed memory: 16 MB.

Sample Input and Output

Input Output Input Output Input Output Input Output

1
2
3
5
2

37

 13
 25
 99
 5
 2

13

 99
 99
 99
 2
 2

No

 4
 1
 7
 23
 3

71

Hints and Guidelines

The problem seems quite complicated, so we will break it into simpler sub-problems.

Processing the Input

The first step in solving the problem is to read and process the input. Input data consists of 5 integers:
3 for the Tribonacci sequence and 2 for the numerical spiral.

Once we have the input data, we need to think about how we will generate the numbers in the two
sequences.

Generating Tribonacci Sequence

For the Tribonacci sequence we will always collect the previous three values and then move the
values of those numbers (the three previous ones) one position in the sequence, i.e. the value of the
first one must accept the value of the second one, and so on. When we are done with the number,
we will store its value in an array. Since the problem description states that the numbers in the
sequences do not exceed 1,000,000, we can stop generating this range at exactly 1,000,000.

Chapter 9.1. Problems for Champions – Part I 339

Generating Numerical Spiral

We need to think of a relation between numbers in the numerical spiral so we can easily generate
every next number without having to look at matrices and loop through them. If we carefully look at
the picture from the description, we will notice that every 2 "turns" in the spiral, the numbers we skip
are increased by 1, i.e. from 5 to 7 and from 7 to 9, not a single number is skipped, but we directly
add with the step of the sequence. From 9 to 13 and from 13 to 17 we skip a number, i.e. we add the
step twice. From 17 to 23 and from 23 to 29 we skip two numbers, i.e. we add the step three times
and so on.

Thus, we see that for the first two we have the last number + 1 * the step, the next two we
add with the 2 * the step and so on. Every time we want to get to the next number of the spiral,
we will have to make such calculations.

What we have to take care of is for each two numbers, our multiplier (let's call it "coefficient") must
increase by 1 (spiralStepMul++), which can be achieved with a simple check (spiralCount % 2
== 0). The whole code from the generation of the spiral in an array is given below.

Finding Common Number for the Sequences

Once we have generated the numbers in both sequences, we can proceed to unite them and build
the final solution. How will it look? For each of the numbers in the first sequence (starting from the
smaller one) we will check if it exists in the other one. The first number that meets this criterion will
be the answer to the problem.

We will do a linear search in the second array, and we will leave the more curious participants to
optimize it using the technique called binary search because the second array is generated in sorted
form, i.e. it meets the requirement to apply this type of search. The code for finding our solution will
look like this:

340 Programming Basics with C#

Alternative Solution

The previous solution to the problem uses arrays to store the values. Arrays are not needed to solve
the problem. There is an alternative solution that generates the numbers and works directly with them
instead of keeping them in an array. On every step we can check whether the numbers in the two
sequences match. If this is the case, we will print the number on the console and terminate the
execution of our program. Otherwise, we will see the current number of which sequence is the smaller
one and we will generate the next one where we are "lagging". The idea is that we will generate
numbers from the sequence that is "behind" until we skip the current number of the other sequence
and then vice versa, and if we find a match in the meantime, we will terminate the execution.

Chapter 9.1. Problems for Champions – Part I 341

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/518#0.

Problem: Magic Dates
Date is given in a "dd-mm-yyyy" format, e.g. 17-04-2018. We calculate the weight of that date by
taking all of its digits, multiplying each digit with the others after it, and finally summing up all the
results obtained. In our case, we have 8 digits: 17032007, so the weight is 1*7 + 1*0 + 1*3 + 1*2
+ 1*0 + 1*0 + 1*7 + 7*0 + 7*3 + 7*2 + 7*0 + 7*0 + 7*7 + 0*3 + 0*2 + 0*0 + 0*0 +
0*7 + 3*2 + 3*0 + 3*0 + 3*7 + 2*0 + 2*0 + 2*7 + 0*0 + 0*7 + 0*7 = 144.

Our task is to write a program that finds all the magical dates between two specific years (inclusively)
corresponding to given weight. Dates must be printed in ascending order (by date) in the format "dd-
mm-yyyy". We will only use the valid dates in the traditional calendar (the leap years have 29 days in
February).

Sample Input and Output

Input Output Input Output

2007
2007
144

17-03-2007
13-07-2007
31-07-2007

2012
2014

80

09-01-2013
17-01-2013
23-03-2013
11-07-2013
01-09-2013
10-09-2013
09-10-2013
17-10-2013
07-11-2013
24-11-2013
14-12-2013
23-11-2014
13-12-2014
31-12-2014

Input Output

2003
2004
1500

No

Input Output

2011
2012

14

01-01-2011
10-01-2011
01-10-2011
10-10-2011

Input Data

Input data should be read from the console. It consists of 3 lines:

• The first line contains an integer: start year.

• The second line contains an integer: end year.

• The third line contains an integer: the search weight for the dates.

Input data will always be valid and will always be in the format described. No need to check.

Output Data

The result should be printed on the console as consecutive dates in "dd-mm-yyyy" format, sorted by
date in ascending order. Each string must be in a separate line. If there are no existing magic dates,
print "No".

https://judge.softuni.org/Contests/Practice/Index/518#0

342 Programming Basics with C#

Constraints

• The start and final year are integer numbers in the range [1900 … 2100].

• Magic weight is an integer in the range [1 … 1000].

• Allowed program time: 0.25 seconds.

• Allowed memory: 16 MB.

Hints and Guidelines

We start with the input data. In this case, we have 3 integers that should be read from the console,
as this is the only entry and processing of input for the problem.

Having the start and the end year, it is nice to know how we will go through every date, not to worry
about how many days there are in the month and whether it is a leap year, and so on.

Loop through Dates

For looping through the dates, we will take advantage of the functionality that gives us the DateTime
class in C#. We will define a start date variable that we can do using the constructor that accepts a
year, month, and day. We know the year is the starting year we read from the console and the month
and the day must be January and 1st respectively. In C#, the "constructor" of DateTime accepts as
first argument the year, as second argument the month and as third argument the day of the month:

Once we have the start date, we want to create a loop that runs until we exceed the final year (or
until we pass December 31 in the final year if we compare the full dates), increasing each day by 1
day.

To increase by one day in each rotation, we will use a method of DateTime – .AddDays(…), which
will add one day to the current date. The method will take care instead of us, to decide where to skip
the next month, how many days there is a month and everything around the leap years.

Caution: since the .AddDays(…) method returns the "new" date, it is important to assign the result,
not just to call the method!

In the end, our loop may look like this:

Note: we can achieve the same result with a for loop: the initialization of the date goes to the first
part of the for, the condition is preserved, and the step is the increase by 1 day.

Calculating Date Weight

Each date consists of exactly 8 characters (digits) – 2 for the day (d1, d2), 2 for the month (d3, d4) and

4 for the year (d5 to d8). This means that we will always have the same calculation every time, and
we can benefit from this to define the formula statically (i.e. not to use loops, referring to different
numbers from the date, but write the whole formula). To be able to write it, we will need all digits
from the date in individual variables to make all the necessary multiplications. By using the division

Chapter 9.1. Problems for Champions – Part I 343

and partition operations on the individual components of the date, using the Day, Month and Year
properties, we can retrieve each digit.

Let's also explain one of the more interesting lines here. Let's take the second digit of the year for
example (d6). We divide the year by 100, and we take a remainder of 10. What do we do? First, we
eliminate the last 2 digits of the year by dividing by 100 (Example: 2018/100 = 20). With the
remainder of 10, we take the last digit of the resulting number (20 % 10 = 0) and so we get 0, which
is the second digit of 2018.

What remains is to do the calculation that will give us the magical weight of a given date. In order not
to write all multiplications as shown in the example, we will simply apply a grouping. What we need
to do is multiply each digit with those that follow it. Instead of typing d1 * d2 + d1 * d3 + … +
d1 * d8, we can shorten this expression to d1 * (d2 + d3 + … + d8) for grouping when we have
multiplication and summing up. Applying the same simplification for the other multiplications, we get
the following formula:

Printing the Output

Once we have the weight calculated of a given date, we need to check and see if it matches the
magical weight we want, in order to know if it should be printed or not. Checking can be done using
a standard if block, taking care to print the date in the correct format.

To print the dates, we have two options:

• The first way is to use the .ToString(…) method, where we can submit the date format, i.e.
whether the days will be printed with a leading zero or not, whether the months will be printed
with leading zeros or not, in words or digits, with a short or full name, etc.

• The second option is to take the individual components of the date Day, Month and Year as we
did when calculating, and to form the output by formatting string.

344 Programming Basics with C#

Caution: as we go through the dates from the start year to the end one, they will always be arranged
in ascending order as per the description.

Finally, if we have not found a date that is eligible, we will have a false value in the found variable
and we will be able to print No.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/518#1.

Problem: Five Special Letters
Two numbers are given: start and end. Write a program that generates all combinations of 5 letters,
each among the sets of {'a', 'b', 'c', 'd', 'e'} so that the weight of these 5 letters is a

number in the range [start … end], inclusive. Print them in alphabetical order, in a single row,
separated by a space. The weight of the letters is calculated as follows:

weight('a') = 5;
weight('b') = -12;
weight('c') = 47;
weight('d') = 7;
weight('e') = -32;

The weight of the sequence of the letters c1, c2, …, cn is calculated by removing all the letters
that are repeated (from right to left) and then calculating the formula:

weight(c1c2…cn) = 1 * weight(c1) + 2 * weight(c2) + … + n * weight(cn)

For example, the weight of bcddc is calculated as follows:

First, we remove the repeating letters and get bcd. Then we apply the formula: 1 * weight('b') +
2 * weight('c') + 3 * weight('d') = 1 * (-12) + 2 * 47 + 3 * 7 = 103.

Another example: weight("cadae") = weight("cade") = 1 * 47 + 2 * 5 + 3 * 7 + 4 *
(-32) = -50.

Input Data

The input data is read from the console. It consists of two numbers:

• The number for start.

• The number for end.

Input data will always be valid and will always be in the format described. No need to check.

Output Data

The result should be printed on the console as a sequence of strings, arranged in alphabetical order.
Each string must be separated from the next one by a single space. If the weight of any of the 5 letter
strings does not exist within the specified range, print "No".

https://judge.softuni.org/Contests/Practice/Index/518#1

Chapter 9.1. Problems for Champions – Part I 345

Constraints

• Numbers for start and end are integers in the range [-10000 … 10000].

• Allowed program time: 0.25 seconds.

• Allowed memory: 16 MB.

Sample Input and Output

Input Output Comments Input Output

40
42

bcead bdcea
weight("bcead") = 41
weight("bdcea") = 40

 300
400

No

Input Output Input Output

-1
 1

bcdea cebda eaaad eaada eaadd
eaade eaaed eadaa eadad eadae
eadda eaddd eadde eadea eaded
eadee eaead eaeda eaedd eaede
eaeed eeaad eeada eeadd eeade
eeaed eeead

200
300

baadc babdc badac badbc badca badcb
badcc badcd baddc bbadc bbdac bdaac
bdabc bdaca bdacb bdacc bdacd bdadc
bdbac bddac beadc bedac eabdc ebadc
ebdac edbac

Hints and Guidelines

Let’s give some hints and guidelines for solving this problem.

Reading the Input Data

As every problem, we start the solution by reading and processing the input data. In this case, we
have two integers that can be processed with a combination of the int.Parse(…) and
Console.ReadLine() methods.

We have several main points in the problem – generating all combinations with a length of 5 including
the 5 letters, removing repeating letters and calculating weight for a simplified word. The answer will
consist of every word whose weight is within the given range [firstNumber, secondNumber].

Generating All Combinations

In order to generate all combinations with length of 1 using 5 symbols, we would use a loop from 0
to 4, as we want each number of the loop to match one character. In order to generate any
combinations of length 2 using 5 characters (i.e. "aa", "ab", "ac", …, "ba", …), we would create two
nested loops each running through the digits from 0 to 4, as we will once again make sure that each
digit matches a specific character. We will repeat this step 5 times, so we will finally have 5 nested
loops with indexes i1, i2, i3, i4 and i5.

346 Programming Basics with C#

Transforming Combinations into Words

Now that we have all 5-digit combinations, we must find a way to "turn" the five digits into a word
with the letters from 'a' to 'e'. One of the ways to do that is to predefine a simple string that contains
the letters that we have

and for each digit we take the letter from the particular position. This way, the number 00000 will
become "aaaaa", and the number 02423 will become "acecd". We can create the 5-letter string in the
following way.

Another way: we can convert the digits to letters by using their arrangement in the ASCII table. The
expression 'a' + i will return 'a' in case i = 0, 'b' in case i = 1, 'c' in case i = 2, etc.

This way we already have generated all 5-letter combinations and can proceed with the following part
of the task.

Attention: as we have chosen a 'pattern' that takes into consideration the alphabetical arrangement
of the letters, and cycles are run in the appropriate manner, the algorithm will generate the works in
alphabetical order and there is no need for additional sorting before printing the output.

Removing Repetitive Letters

Once we have the finished string, we have to remove all the repeating symbols. We will do this by
adding the letters from left to right in a new string and each time before adding a letter, we will check
if it already exists – if it does, we will skip it and if it doesn't, we will add it. To begin with, we will add
the first letter to the starting string.

Then we will do the same with the other 4, checking each time with the following condition and the
.IndexOf(…) method. This can be done with a loop by fullWord (leaving it to the reader for

exercise), and it can be done in the lazy way by copy-paste.

Chapter 9.1. Problems for Champions – Part I 347

The .IndexOf(…) method returns the index of the particular element if it is found or -1 if the item
is not found. Therefore, every time we get -1, it means that we still do not have this letter in the new

string with unique letters and we can add it, and if we get a value other than -1, this will mean we
already have the letter and we'll not add it.

Calculating Weight

Calculating the weight is simply going through the unique word (word) obtained in the last step, and
for each letter we need to take its weight and multiply it by the position. For each letter, we need to
calculate what value we will multiply its position by, for example by using a switch construction.

Once we have the value of that letter, we should multiply it by its position. Because the indexes in
the string differ by 1 from the actual positions, i.e. index 0 is position 1, index 1 is position 2, etc., we
will add 1 to the indexes.

All intermediate results obtained must be added to the total amount for each letter of the 5-letter
combination.

Preparing the Output

Whether a word needs to be printed is determined by its weight. We need a condition to determine
if the current weight is in the range [start … end] passed to the input at the start of the program. If
this is the case, we print the full word (fullWord).

Be careful not to print the word with unique letters. It was only needed to calculate the weight!

The words are separated with a space and we'll accumulate them in an intermediate variable result,
which is defined as an empty string at the beginning.

Final Touches

The condition is met unless we do not have a single word in the entered range. In order to find out if
we have found a word, we can simply check whether the string result has its initial value (i.e., an

empty string), if it does, we print No, otherwise we print the whole string without the last space (using
the .Trim()) method.

348 Programming Basics with C#

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/518#2.

https://judge.softuni.org/Contests/Practice/Index/518#2

Chapter 9.2. Problems for Champions – Part II
In this chapter we will review three additional problems that belong to the category "For Champions",
i.e. they are more complex than the rest of the problems in this book.

More Complex Problems on the Studied Material
Before we move on to particular tasks, we must clarify that these can be solved in an easier way with
additional knowledge in programming with C# (methods, arrays, collections, recursion, etc.), but each
solution that will be provided now only uses the material covered in this book. The goal is to learn
how to construct more complex algorithms based on your knowledge studied until now.

Problem: Passion Shopping Days
Lina has a real shopping passion. When she has some money, she immediately goes to the closest
shopping center (mall) and tries to spend as much as she can on clothes, bags and shoes. But her
favorite thing are winter sales. Our task is to analyze her strange behavior and calculate the purchases
that Lina does when she enters the mall, as well as the money she has left when the shopping is over.
All prices and money are in BGN (Bulgarian levs, lv).

The first line of the input will pass the amount that Lina has before she starts shopping. After that,
upon reading the "mall.Enter" command, Lina enters the mall and starts shopping until the
"mall.Exit" command is given. When Lina starts shopping, on each line of the input you will be given
strings that are actions performed by Lina. Each symbol in the string is a purchase or another action.
String commands contain only symbols of the ASCII table. The ASCII code of each sign is related to
what Lina must pay for each of the goods. You need to interpret the symbols in the following way:

• If the symbol is a capital letter, Lina gets a 50% discount, which means that you must decrease
the money she has by 50% of the numeric representation of the symbol from the ASCII table.

• If the symbol is a small letter, Lina gets a 70% discount, which means that you must decrease
the money she has by 30% of the numeric representation of the symbol from the ASCII table.

• If the symbol is "%", Lina makes a purchase that decreases her money in half.

• If the symbol is "*", Lina withdraws money from her debit card and adds 10 lv. to her available
funds.

• If the symbol is different from all of the aforementioned, Lina just makes a purchase without
discount, and in this case you should simply subtract the value of the symbol from the ASCII
table from her available funds.

If a certain value of her purchases is higher than her current available funds, Lina DOES NOT make
the purchase. Lina's funds cannot be less than 0.

The shopping ends when the "mall.Exit" command is given. When this happens, you need to print
the number of purchases made and the money that Lina has left.

Input Data

The input data must be read from the console. The first line of the input will indicate the amount that
Lina has before starting to purchase. On each of the following lines there will be a particular command.
After you read the command "mall.Enter", on each of the following lines you will be given strings
holding information regarding the purchases / actions that Lina wants to perform. These strings will
keep being passed, until the "mall.Exit" command is given.

Always only one "mall.Enter" command will be given, as well as only one "mall.Exit" command.

350 Programming Basics with C#

Output Data

The output data must be printed on the console. When shopping is over, you must print on the
console a particular output depending on what purchases have been made.

• If no purchases have been made – "No purchases. Money left: {remaining funds} lv."

• If at least one purchase is made – "{number of purchases} purchases. Money left: {remaining
funds} lv."

The funds must be printed with accuracy of up to 2 symbols after the decimal point.

Constraints

• Money is a float number within the range: [0 - 7.9 x 1028].

• The count of strings between "mall.Enter" and "mall.Exit" will be within the range: [1-20].

• The count of symbols in each string that represents a command will be within the range: [1-20].

• Allowed execution time: 0.1 seconds.

• Allowed memory: 16 MB.

Sample Input and Output

Input Output Comments

110
mall.Enter
d
mall.Exit

1 purchases. Money
left: 80.00 lv.

‘d’ has an ASCII code of 100. ‘d’ is a small letter, this is
why Lina gets a 70% discount. She spends 30% of 100,
which is 30 lv. After this purchase, she has: 110 - 30 =
80 lv.

Input Output Input Output

110
mall.Enter
%
mall.Exit

1 purchases. Money
left: 55.00 lv.

 100
mall.Enter
Ab
**
mall.Exit

2 purchases. Money left: 58.10 lv.

Hints and Guidelines

We will separate the solution of the problem into three main parts:

• Processing of the input.

• Algorithm for solving the problem.

• Formatting the output.

Let's examine each of the parts in details.

Processing the Input Data

The input of our task consists of a few components:

• On the first line we have all the money that Lina has for shopping.

• On each of the following lines we will have some kind of a command.

Chapter 9.2. Problems for Champions – Part II 351

The first part of reading the input is trivial:

But the second one contains a detail that we need to take into consideration. The requirements state
the following:

On each of the following lines there will be a particular command. After you read the command
"mall.Enter", on each of the following lines you will be given strings containing information
regarding the purchases / actions that Lina wants to perform.

This is where we need to take into consideration the fact that from the second input line on, we need
to start reading commands, but only after we read the command "mall.Enter", we must start processing
them. How can we do this? Using a while or a do-while loop is a good option. Here is an exemplary
solution of how to skip all commands before processing the command "mall.Enter":

Here is the place to point out that calling Console.ReadLine() after the end of the loop is used for
moving to the first command for processing.

Algorithm for Solving the Problem

The algorithm for solving the problem is a direct one – we continue reading commands from the
console, until the command "mall.Exit" is passed. In the meantime, we process each symbol (char) of

each one of the commands according to the rules specified in the task requirements, and in parallel,
we modify the amount that Lina has, and store the number of purchases.

Let's examine the first two problems for our algorithm. The first problem concerns the way we read
the commands until we reach the "mall.Exit" command. The solution that we previously saw uses a
while-loop. The second problem for the task is to process each symbol of the command passed.
Keeping in mind that the input data with the commands is string type, the easiest way to access

each symbol inside the strings is via a foreach loop:

Processing Command Symbols

The next part of the algorithm is to process the symbols from the commands, according to the
following rules in the requirements:

352 Programming Basics with C#

• If the symbol is a capital letter, Lina gets a 50% discount, which means that you must decrease
the money she has by 50% of the numeric representation of the symbol from the ASCII table.

• If the symbol is a small letter, Lina gets a 70% discount, which means that you must decrease
the money she has by 30% of the numeric representation of the symbol from the ASCII table.

• If the symbol is "%", Lina makes a purchase that decreases her money in half.

• If the symbol is "*", Lina withdraws money from her debit card and adds 10 lv. to her available
funds.

• If the symbol is different from all of the aforementioned, Lina just makes a purchase without
discount, and in this case you should simply subtract the value of the symbol from the ASCII
table from her available funds.

Let's examine the problems that we will be facing in the first condition. The first one is how to
distinguish if a particular symbol is a capital letter. We can use one of the following ways:

• Keeping in mind the fact that the letters in the alphabet have a particular order, we can use the
following condition action >= 'A' && action <= 'Z', in order to check if our symbol is
within the capital letters range.

• We can use the char.IsUpper(…) function.

The other problem is how to skip a particular symbol, if it is not an operation that requires more money
that Lina has. This is doable using the continue construction.

An exemplary condition for the first part of the requirements looks like this:

Note: the variable “purchases” is of int type, in which we store the number of all purchases.

We believe the reader should not have difficulties implementing all the other conditions because they
are very similar to the first one.

Formatting the Output

In the end of our task we must print a particular output, depending on the following condition:

• If no purchases have been made – "No purchases. Money left: {remaining funds} lv."

• If at least one purchase is made – "{number of purchases} purchases. Money left: {remaining
funds} lv."

The printing operations are trivial, as the only thing we need to take into consideration is that the
amount has to be printed with accuracy of up to 2 symbols after the decimal point.

How can we do that? We will leave the answer to this question to the reader.

Chapter 9.2. Problems for Champions – Part II 353

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/519#0.

Problem: Numerical Expression
Bonny is an exceptionally powerful witch. As her natural power is not sufficient to successfully fight
vampires and werewolves, she has started to master the power of Expressions. An expression is very
hard to master, because the spell relies on the ability to quickly solve mathematical expressions.

In order to use an "Expression spell", the witch must know the result of a mathematical expression in
advance. An Expression spell consists of a few simple mathematical expressions. Each mathematical
expression can contain operators for summing up, subtraction, multiplying and/or division.

The expression is solved without considering the mathematical rules for calculating numerical
expressions. This means that the priority is applied according to the sequence of the operators, and
not the type of calculation that they do. The expression can contain brackets, as everything inside the
brackets is calculated first. Every expression can contain multiple brackets, but no nested brackets:

• An expression containing (…(…)…) is an invalid one.

• An expression containing (…)…(…) is a valid one.

Example

The expression

is solved in the following way:

Bonny is very pretty, but not as wise, so she will need our help to master the power of Expressions.

Input Data

The input data consists of a single text line, passed from the console. It contains a mathematical
expression for calculation. The line always ends with the "=" symbol. The "=" symbol means end of
the mathematical expression.

The input data is always valid and always in the described format. No need to validate it.

Output Data

The output data must be printed on the console. The output consists of one line: the result of the
calculated mathematical expression, rounded up to the second digit after the decimal point.

https://judge.softuni.org/Contests/Practice/Index/519#0

354 Programming Basics with C#

Constraints

• The expressions will consist of maximum 2500 symbols.

• The numbers of each mathematical expression will be within the range [1 … 9].

• The operators in the mathematical expressions will always be among + (summing up), -
(subtraction), / (division) or * (multiplying).

• The result of the mathematical expression will be within the range [-100000.00 … 100000.00].

• Allowed execution time: 0.1 seconds.

• Allowed memory: 16 MB.

Sample Input and Output

Input Output Input Output

4+6/5+(4*9–8)/7*2= 8.57 3+(6/5)+(2*3/7)*7/2*(9/4+4*1)= 110.63

Hints and Guidelines

As usual, we will first read and process the input, after that we will solve the problem, and finally, we
will print the result, formatted as required.

Reading the Input Data

The input data will consist of exactly one text line read from the console. Here we have two ways to
process the input. The first way is by reading the entire line using the Console.
ReadLine() command and accessing each symbol (char) of the line via a foreach loop. The second
one is by reading the input symbol by symbol using the Console.Read() command and processing
each symbol.

We will use the second option to solve the problem.

Creating Helper Variables

For the goals of our task we need two variables:

• One variable where we will store the current output.

• One variable where we will store the current operator of our expression.

We will clarify two details regarding the aforementioned code. The first one is the use of decimal
type for storing the output of our expression in order to avoid any problems with the accuracy
pertaining to the float and double type. The second one is the default value of the operator – it is
+, so that the very first number can be added to our output.

Defining the Program Structure

Now that we already have our starting variables, we must decide what will be the main structure of
our program. By the requirements we understand that each expression ends with =, i.e. we must read
and process symbols until we reach a =. This is followed by an accurately written while loop.

Chapter 9.2. Problems for Champions – Part II 355

The next step is the processing of our symbol variable. We have 3 possible cases for it:

• If the symbol is a start of a sub-expression placed in brackets i.e. the found symbol is a (.

• If the symbol is a digit between 0 and 9. But how can we check this? How can we check if our
symbol is a digit? We can use for assistance the ASCII code of the symbol, via which we can use
the following formula: [ASCII code of our symbol] – [ASCII code of the symbol 0]
= [the digit that represents the symbol]. If the result of this condition is between 0
and 9, then our symbol is really a number.

• If the symbol is an operator, i.e. it is +, -, * or /.

Implementing the Proposed Idea

Let's examine the actions that we need to undertake in the relevant cases that we defined:

• If our symbol is an operator, then the only thing we need to do is to set a new value for the
expressionOperator variable.

• If our symbol is a digit, then we need to change the current result of the expression depending
on the current operator, i.e. ifexpressionOperator is a -, then we must decrease the result
by the numerical representation of the current symbol. We can get the numerical representation
of the current symbol via the formula that we used upon checking the condition for this case
(the [ASCII code of our symbol] – [the ASCII code of the symbol0] = [the
digit that represents the symbol])

This is a sample code, implemented the above idea:

356 Programming Basics with C#

• If our symbol is a (, this indicates the beginning of a sub-expression (an expression in brackets).
By definition, the sub-expression must be calculated before modifying the result of the whole
expression (the actions in brackets are performed first). This means that we will have a local
result for the sub-expression and a local operator.

Calculating the Sub-Expression Value

After that, in order to calculate the sub-expression value, we will use the same methods that we used
for calculating the main expression – we use a while loop to read symbols (until we reach an)

symbol). Depending on whether the read symbol is a number or an operator, we modify the result of
the sub-expression. The implementation of these operations is identical to the above described
implementation for calculating expressions. We believe the reader will be able to easily handle it.

After finishing the result calculation for our sub-expression, we modify the result of the whole
expression depending on the value of the expressionOperator.

Chapter 9.2. Problems for Champions – Part II 357

Formatting the Output

The only output that the program must print on the console is the result of solving the expression
with accuracy of up to two symbols after the decimal point. How can we format the output this way?
We will leave the answer to this question to the reader.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/519#1.

Problem: Bulls and Cows
We all know the game called "Bulls and Cows": http://en.wikipedia.org/wiki/Bulls_and_cows. Upon
having a particular 4-digit secret number and a 4-digit suggested number, the following rules are
applied:

• If a digit in the suggested number matches a digit in the secret number and is located at the
same position, we have a bull.

• If a digit in the suggested number matches a digit in the secret number, but is located at a
different position, we have a cow.

Secret number 1 4 8 1 Comment

Suggested number 8 8 1 1
Bulls = 1
Cows = 2

Secret number 1 4 8 1 Comment

Suggested number 9 9 2 4
Bulls = 0
Cows = 2

Upon having a particular secret number and the bulls and cows pertaining to it, our task is to find all
possible suggested numbers in ascending order.

If there are no suggested numbers that match the provided criteria provided, we must print "No".

Input Data

The input data is read from the console. The input consists of 3 text lines:

• The first line contains the secret number.

• The second line contains the number of bulls.

• The third line contains the number of cows.

https://judge.softuni.org/Contests/Practice/Index/519#1
http://en.wikipedia.org/wiki/Bulls_and_cows

358 Programming Basics with C#

The input data will always be valid. There is no need to verify them.

Output Data

The output data must be printed on the console. The output must consist of a single line, holding all
suggested numbers, space separated. If there are no suggested numbers that match the criteria
provided from the console, we must print “No”.

Constraints

• The secret number will always consist of 4 digits in the range [1..9].

• The number of cows and bulls will always be in the range [0..9].

• Allowed execution time: 0.15 seconds.

• Allowed memory: 16 MB.

Sample Input and Output

Input Output

2228
2
1

1222 2122 2212 2232 2242 2252 2262 2272 2281 2283 2284 2285 2286 2287
2289 2292 2322 2422 2522 2622 2722 2821 2823 2824 2825 2826 2827 2829
2922 3222 4222 5222 6222 7222 8221 8223 8224 8225 8226 8227 8229 9222

Input Output

1234
3
0

1134 1214 1224 1231 1232 1233 1235 1236 1237 1238 1239 1244 1254 1264
1274 1284 1294 1334 1434 1534 1634 1734 1834 1934 2234 3234 4234 5234
6234 7234 8234 9234

Hints and Guidelines

We will solve the problem in a few steps:

• We will read the input data.

• We will generate all possible four-digit combinations (candidates for verification).

• For each generated combination we will calculate how many bulls and how many cows it has
according to the secret number. Upon matching the needed bulls and cows, we will print the
combination.

Reading the Input Data

We have 3 lines in the input data:

• Secret number.

• Number of desired bulls.

• Number of desired cows.

Reading the input data is trivial:

Chapter 9.2. Problems for Champions – Part II 359

Declaring a Flag

Before starting to write the algorithm for solving our problem, we must declare a flag that indicates
whether a solution is found:

If after finishing our algorithm this flag is still false, then we will print No on the console, as specified
in the requirements.

Generating Four-Digit Numbers

Let's start analyzing our problem. What we need to do is analyze all numbers from 1111 to 9999,
excluding those that contain zeroes (for example 9011, 3401, etc. are invalid). What is the easiest way
to generate all these numbers? We will use nested loops. As we have a 4-digit number, we will have
4 nested loops, as each of them will generate an individual digit in our number for testing.

Thanks to these loops, we have access to every digit of all numbers that we need to check. Our next
step is to separate the secret number into digits. This can be achieved very easily using a combination
of integer division and modular division.

Creating Additional Variables

Only two last steps remain until we start analyzing how many cows and bulls there are in a particular
number. Accordingly, the first one is the declaration of counter variables in the nested loops, in order
to count the cows and bulls for the current number. The second step is to make copies of the digits
of the current number that we will analyze, in order to prevent problems upon working with nested
loops, in case we make changes to them.

360 Programming Basics with C#

We are ready to start analyzing the generated numbers.

Counting the Bulls

What logic can we use? The easiest way to check how many cows and bulls there are inside
a number is via a sequence of if-else conditions. Yes, this is not the most optimal way, but in order
to stick to what is covered in the current book, we will use this approach.

What conditions do we need?

The condition for the bulls is very simple – we check whether the first digit of the generated number
matches the same digit in the secret number. We remove the digits that are already checked in order
to avoid repetitions of bulls and cows.

We repeat the action for the second, third and fourth digit.

Counting the Cows

We will apply the following condition for the cows – first we will check whether the first digit of the
generated number matches the second one, the third one or the fourth digit of the secret number.
An example for the implementation:

After that, we sequentially check whether the second digit of the generated number matches the first
one, the third one or the fourth digit of the secret number; whether the third digit of the generated

Chapter 9.2. Problems for Champions – Part II 361

number matches the first one, the second one or the fourth digit of the secret number; and finally,
we check whether the fourth digit of the generated number matches the first one, the second one or
the third digit of the secret number.

Printing the Output

After completing all conditions, we just need to check whether the bulls and cows in the currently
generated number match the desired bulls and cows read from the console. If this is true, we print
the current number on the console.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/519#2.

https://judge.softuni.org/Contests/Practice/Index/519#2

https://softuni.org

Chapter 10. Methods
In the current chapter we get familiar with methods and learn what they are, and which are the base
concepts when working with them. We will also learn why it is a good practice to use them, how to
declare and call them. We will look at parameters and return value of a method, and also understand
how to use the returned value. At the end of the chapter we will look at the established practices
when using methods.

Introduction by Examples
Methods allow invoking a parameterized named piece of code several times from many places in the
code. Example:

static void PrintLetter(char letter, int count)
{
 for (int i = 0; i < count; i++)
 Console.Write(letter + " ");
 Console.WriteLine();
}

static void Main()
{
 int count = 0;
 for (char letter = 'a'; letter <= 'd'; letter++)
 PrintLetter(letter, ++count);

 for (char letter = 'c'; letter >= 'a'; letter--)
 PrintLetter(letter, --count);
}

Run the above code example: https://repl.it/@nakov/triangle-of-letters-csharp.

The above code produces the following output:

a
b b
c c c
d d d d
c c c
b b
a

The above method (named piece of code) PrintLetter(letter, count) prints given character
(letter) several times (count). It is invoked several times in two loops from the program Main()
method.

Let's get into details how methods are defined, how methods are invoked, how methods accept
parameters (input values) and how methods return results (output values).

Methods can take parameters and can return values, e.g.

static double CalcCircleArea(double radius)
{
 return Math.PI * radius * radius;
}

https://repl.it/@nakov/triangle-of-letters-csharp

364 Programming Basics with C#

static void Main()
{
 Console.WriteLine("r = {0}, area = {1}", 5, CalcCircleArea(5));
 Console.WriteLine("r = {0}, area = {1}", 2.8, CalcCircleArea(2.8));
}

Run the above code example: https://repl.it/@nakov/circle-area-methods-csharp.

The output from the above code is like this:

r = 5, area = 78.5398163397448
r = 2.8, area = 24.630086404144

Let's get into details on how to define, invoke and use methods in C#, how to take and pass
parameters and to return values.

What Is a "Method"?
Up until now we found out that when writing the code of a program that solves a problem, it is easier
to divide the task into parts. Each part fulfills a given action and this way it is not only easier to solve
the task, but the readability of the code and checking for mistakes is significantly better.

Each piece of code that executes some functionality and has been separated logically can take the
functionality of the method. This is exactly what methods are – pieces of code with names given by
us in a certain way, which can be called as many times as we need them.

A method can be called as many times, as we think we need, in order to solve a problem. This saves
us repeating the same code over and over again, and also reduces the possibility to make a mistake
when correcting the code.

Simple Methods

Simple methods are used for performing a certain action that helps to solve a given problem. These
actions can be printing a string on the console, doing a verification, executing a loop, etc.

Let's see the following example of a simple method:

static void PrintHeader()
{
 Console.WriteLine("-----------");
}

This method prints a header, which is a sequence of the - symbol. Because of this, its name is
PrintHeader. The parentheses (and) always follow the name, no matter what the method is called.

We will later see how to name the methods we work with, but for now, we will only say that it is
important for its name to describe the action that the method is doing.

The body of the method contains the program code, which is between the curly brackets { and }.
These brackets always follow its declaration and between them we write the code, which solves the
problem described by the method's name.

To call this method, we just write its name, along with () like it is shown below:

PrintHeader();

https://repl.it/@nakov/circle-area-methods-csharp

Chapter 10. Methods 365

A method should be called from a code inside another method, e.g. from the Main() method of the
C# program:

static void Main()
{
 PrintHeader();
}

Why Use Methods?

So far we determined that methods help with dividing larger programs into smaller parts, which leads
to easier solving of the problem in question. This makes our program not only better structured and
easier to read, but more understandable as well.

By using methods, we avoid repeating code. Repetition is bad practice, because it complicates
maintaining the program and leads to errors. If a certain part of our code can be found more than
once in the program and we need to change it, the changes must be made in all of the repetitions of
the code in question. There is a great probability to miss a spot where correction is needed, which
would lead to incorrect behavior of the program. This is the reason why it is a good practice to use a
certain fragment of code more than once in our program, to define it as a separate method.

Methods make it possible to use certain code multiple times. With solving more and more problems,
you will find that using already existing methods saves a lot of time and effort.

Declaring Methods

In C# you can declare methods inside a class, i.e. between the opening { and closing } brackets of the
class. Declaring is registering the method in the program, so that it can be recognized in the rest of it.
The best-known example is the Main(…) method, which we use in every program that we write.

With the next example we will look at the mandatory elements in the declaration of a method.

• Type of the returned value. In this case the type is double, which means that the method will
return a result, which is of double type. The returned value can be int, double, string etc.,
and also void. If the type is void, this means that the method doesn't return a result, but only
does a particular operation.

• Method name. The name of the method is defined by us, but we shouldn't forget that it has to
describe the function, which is executed by the code in its body. In the example the name is
GetSquare, which tells us that this method is made to find the area of a square.

366 Programming Basics with C#

• Parameters list. It is declared between the parentheses (and) that we write after its name.
This is where we list all the parameters that the method will use. There can be only one
parameter, multiple ones or it could be an empty list. If there aren't any parameters, we will
write only the parentheses (). In this example we declare the parameter double num.

• static declaration in the method description. For the moment you can accept that we write
static always when we declare a method, and later when we get familiar with object-oriented
programming (OOP), we will learn about the difference between static methods (shared for the
whole class) and methods of an object, which work on the data of a certain instance of the class
(object).

When declaring methods, you must follow the sequence of its base elements – first type of the
returned value, then the method name and in the end the list of parameters, surrounded by
parentheses ().

After we have declared a method, its implementation (body) follows. In the body of the method we
write down the algorithm, by which it solves a problem, i.e. the body contains the code (program
block), which applies the method's logic. In the shown example we are calculating the area of a square,
which is num * num.

When declaring a variable in the body of a method, it is called a local variable of the method. The area
where this variable exists and can be used starts from the line where we have declared it and reaches
the closing curly bracket } of the body of the method. This area is called variable scope.

Calling Methods

Calling a method means starting to execute the code, which is in the body of the method. This happens
by writing its name, followed by parentheses () and the semicolon sign ; to end the line. If the method
needs input data, it is given in the parentheses (), and the succession of the parameters should be

the same as the one of the given parameters when declaring the method. Here is an example:

A method can be called from several places in the program. One way is to call it in the main method.

A method can also be called from the body of another method, which is not the main method of the
program.

Chapter 10. Methods 367

There is also a possibility for the method to be called in its own body. This is called recursion and you
can find more information about it in Wikipedia (https://en.wikipedia.org/wiki/Recursion) or you can
search on your own in the Internet.

It is important to know that if a method is declared in a class, it can be called before the line, on which
it has been declared.

Example: Blank Receipt

Write a method that prints a blank receipt. The method should call another three methods: one to
print the header, one for the middle part of the receipt and one for the lower part.

Part of the receipt Text

Upper part
CASH RECEIPT

Middle part
Charged to____________________
Received by___________________

Lower part

(c) SoftUni

Sample Input and Output

Input Output

(no input)

CASH RECEIPT

Charged to____________________
Received by___________________

(c) SoftUni

Hints and Guidelines

The first step is to create a void method to print the upper part of the receipt (header). Let's give it a
meaningful name, which describes what the method does, e.g. PrintReceiptHeader. In its body
write the code from the example below:

https://en.wikipedia.org/wiki/Recursion

368 Programming Basics with C#

In the same way we'll create two more methods to print the middle part of the receipt (body)
PrintReceiptBody and to print the lower part of the receipt (footer) PrintReceiptFooter.

After this we will create another method, which will call the three methods we already wrote, one
after the other:

In the end we'll call the PrintReceipt method from the body of the Main method of our program:

Testing in the Judge System

The program with five methods that are invoked from one another is ready and we can run and test
it, after which we can send it for automated evaluation and grading in the SoftUni judge system:
https://judge.softuni.org/Contests/Practice/Index/594#0.

Methods with Parameters
Frequently in order to solve a problem, the method by which we do this needs additional information,
which depends on its purpose. This is precisely the information that the method parameters are, and
its behavior depends on them.

Using Parameters in Methods

As we observed above, the parameters can be zero, one or more. When declaring them you should
divide them with a comma. They can be of any type (int, string etc.), and there is an example below
to show how they can be used by the method.

We declare the method and its list of parameters, then we write the code that the method executes.

After that call the method and give it particular values:

https://judge.softuni.org/Contests/Practice/Index/594#0

Chapter 10. Methods 369

When declaring parameters, we can use various types of variables, and we should be careful that
every parameter has a type and name. It is important to note that when calling the method, we must
pass to it values for the parameters in the order, in which they are declared. If the parameters are first
int and after that string, when calling the method, we can't give it first a string and then int. We
can only change places of given parameters if we write the name of the parameter beforehand, as
you will see below in one of the examples. This is generally not a good practice!

Let's look at the example for declaring a method, which has several parameters of different types.

Example: Sign of an Integer

Create a method that prints the sign of an integer n.

Sample Input and Output

Input Output

 2 The number 2 is positive.

-5 The number -5 is negative.

 0 The number 0 is zero.

Hints and Guidelines

The first step is creating a method and giving it a descriptive name, e.g. PrintSign. This method will
have only one parameter of int type.

The next step is implementing the logic by which the program will check what the sign of the number
is. You can see from the examples that there are three cases – the number is larger than, equal to or
lower than zero, which means that we'll make three verifications in our method.

The next step is to read the input number and to call the new method from the body of the Main
method.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#1.

https://judge.softuni.org/Contests/Practice/Index/594#1

370 Programming Basics with C#

Optional Parameters

C# supports using optional parameters. They allow missing parameters when calling the method. Their
declaring is done by providing default value in the description of the parameter.

The following example illustrates using optional parameters:

The shown method PrintNumbers can be called in one of several ways:

Example: Printing a Triangle

Create a method which prints a triangle as in the examples.

Sample Input and Output

Input Output

Input Output

Input Output

Input Output

2
1
1 2
1

3

1
1 2
1 2 3
1 2
1

4

1
1 2
1 2 3
1 2 3 4
1 2 3
1 2
1

1 1

Hints and Guidelines

Before creating a method to print a row with a given beginning and an end, we must read the input
number from the console. After that we choose a meaningful name, which describes its purpose, e.g.
PrintLine, and implement it.

Chapter 10. Methods 371

From the drawing exercises we remember that it is good practice to divide the figure into several
parts. To make it easier we will divide the triangle into three parts – upper, middle and lower.

The next step is to print the upper half of the triangle using a loop:

Then we print the middle part:

In the end we print the lower part of the triangle, but this time the loop step decreases.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#2.

Example: Draw a Filled Square

Print on the console a filled square with side n, as in the examples below.

Sample Input and Output

Input Output Input Output Input Output

4

-\/\/\/-
-\/\/\/-

3

-\/\/-
-\/\/-

2

Hints and Guidelines

The first step is to read the input from the console. After that we need to create a method, which will
print the first and the last rows because they are the same. Let's remember that we must give it a
descriptive name and give it as a parameter the length of the side. We will use the constructor new
string.

Our next step is to create a method that will draw the middle rows on the console. Again, give it a
descriptive name i.e. PrintMiddleRow. This is a sample code:

https://judge.softuni.org/Contests/Practice/Index/594#2

372 Programming Basics with C#

Finally, call the methods in the Main() method of the program in order to draw the whole square:

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#3.

Returning a Result from a Method
We already examined methods that do a specific task, for example printing some text, a number or a
figure on the console. There are also other types of methods that can return some kind of result.
These are the methods we are going to analyze in the next lines.

Types of Returned Values

Up until now we saw some examples, in which when declaring methods, we used the keyword void,
which shows that the method does not return a result, but just executes a certain action.

If we replace void by a type of some variable, this will tell the program that the method should return
a value of the said type. This returned value could be of any type – int, string, double etc.

In order for a method to return a result we need to write the type of returned value we
expect when declaring the method, in the place of void.

We should note that the result returned by the method can be of a type, compatible with the type of
the returned value of the method. For example, if the declared type of the returned value is double,
we can return a value of int type.

https://judge.softuni.org/Contests/Practice/Index/594#3

Chapter 10. Methods 373

The "Return" Operator

In order to obtain a result from the method we need to use the return operator. It should be used

in the body of the method and tells the program to stop its execution and to return the method
invoker a certain value, which is defined by the expression after the return operator.

In the example below there is a method that reads two names from the console, concatenates them
and returns them as a result. The return value is of string type:

The return operator can also be used in void methods. This way the method will stop its execution

without returning a value, and after it there shouldn't be an expression, which should be returned. In
this case we use return only to exit the method.

There are cases where return can be called from multiple places in the method, but only if there are

certain input conditions.

The "Return" Operator – Example

We have a method in the example below, which compares two numbers and returns a result
respectively -1, 0 or 1 depending on if the first argument is smaller, equal or larger than the second
argument, given to the function. The method uses the keyword return in three different places, in
order to return three different values according to the logic of comparing the numbers:

We can invoke the above method and ensure that it behaves as expected:

• CompareTo(3, 4) → -1

• CompareTo(20, 10) → 1

• CompareTo(5, 5) → 0

• CompareTo(-5, -7) → 1

• CompareTo(-10, -5) → -1

374 Programming Basics with C#

The Code After "Return" is Inaccessible

After the return operator, there should not be any more lines of code in the current block, because
if there are, Visual Studio will warn you that it has found a piece of code that is inaccessible:

In programming you can't have the return operator twice, one after the other (double
return), because executing the first one won't allow the execution of the second one.
From time to time programmers joke by saying “write return; return; and let's go”,
in order to explain that the program logic is lost.

Using the Returned Value

After a method is executed and returns a value, this value can be used in multiple ways.

The first one is to assign the result as a value of a variable of a compatible type:

The second one is for the result to be used in an expression:

The third one is to pass the result of the method to another method:

Example: Calculating Triangle Area

Create a method that calculates the area of a triangle using the given base and height and returns it
as a result.

Sample Input and Output

Input Output

3
4

6

Hints and Guidelines

The first step is to read the input. After that, create a method, but this time be careful when declaring
to give it the correct type of data we want the method to return, which is double.

Chapter 10. Methods 375

The next step is to call the new method from the Main() method and to store the returned value in
a suitable variable.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#4.

Example: Math Power

Create a method that calculates and returns as result the power of a given number.

Sample Input and Output

Input Output Input Output

2
8

256
 3

4
81

Hints and Guidelines

Our first step is to read the input data from the console. The next step is to create a method that will
take two parameters (the number and the power) and returns as a result a number of double type.

After we have done the calculations, we have to only print the result in the Main() method of the
program.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#5.

Methods Returning Multiple Values
There are cases in practice when we need a method to return more than one element as a result. For
this to be possible ValueTuple has been integrated in Visual Studio and C# (C# 7 and later versions),
as well as a literal of ValueTuple type. The ValueTuple type represents two values, which allow the
temporary containing of multiple values. The values are contained in variables (fields – we will learn
about them later) of the corresponding types. Although the type Tuple existed before C# 7, it didn't

https://judge.softuni.org/Contests/Practice/Index/594#4
https://judge.softuni.org/Contests/Practice/Index/594#5

376 Programming Basics with C#

have good support in the older versions and it's ineffective. That's why in previous versions of C# the
elements in one Tuple were shown as Item1, Item2 etc. and the names of their variables (the
variables in which they are contained) could not be changed. In C# 7 the type (ValueTuple) is

maintained, which allows giving meaningful names to the elements in a ValueTuple.

Declaring a ValueTuple

Let's examine an example declaring of a variable of ValueTuple type:

var personInfo = (name: "Steve", age: 27, "Bulgaria");

To make it easier when declaring, we use the keyword var, and in the brackets we list the names of
the values we want, followed by the values themselves. Let's see what the variable personInfo

contains in debug mode:

We can see that it contains several fields with names and values, which were given when initializing
the variable. We can see that the last variable is called Item3. This is so because when initializing we

haven't named the variable, which contains the value "Bulgaria". In this case the naming is by default,
i.e. the variables are named Item1, Item2, Item3, etc.

Method Returning Multiple Values

The following method takes as parameters two integers (x and y) and returns two values – the result

of integer division and the remainder:

static (int result, int reminder) Divide(int x, int y)
{
 int result = x / y;
 int reminder = x % y;
 return (result, reminder);
}

This method returns a result of ValueTuple type, containing two variables (fields) of int type, named
result and reminder respectively. Calling the method is done in the following way:

var division = Divide(1, 3);

In order to get the results returned from the method, we apply point notation to the variable
division, as it is shown on the example below:

var division = Divide(1, 3);
int res = division.result;
int rem = division.reminder;

To simplify the developers, Visual Studio implements auto-complete for tuples, returned from a
method, just as it can be expected:

Chapter 10. Methods 377

Method Overloading
In many programming languages like C# and Java the same method can be declared in few variants
with the same name and different parameters. This goes by the term “method overloading”. Now let's
see how to write these overloaded methods in C#.

Method Signature

In programming methods are identified through the elements of their declaration: name of the method
+ a list of its parameters. These two elements define its specification, the so called “method signature”.

The method signature is defined by the method name and the definitions of the method parameters
(only parameter types are considered, and the parameter names are ignored). Example:

In this example the method’s signature is its name (Print), together with its parameter types (string).

If our program holds several methods with the same name, but with different lists of parameters
(signatures), we can say that we use “method overloading”.

Overloading Methods in C# Programs

As we mentioned, if you use the same name for several methods with different signatures, this means
that you are overloading a method. The code below shows how three different methods can use the
same name with different combinations of parameters and execute different actions.

378 Programming Basics with C#

Signature and Return Value Type

It is important to say that the returned type as a result of the method is not a part of its signature. If
the returned type was a part of the signature, then the compiler doesn't know which method exactly
to call (there is an ambiguity).

Let's look at the following example: we have two methods with different return types. Despite that,
Visual Studio shows that there is a mistake, because both of their signatures are the same. Therefore,
when trying to call a method named Print(…), the compiler can't know which of the two methods
to invoke.

Example: Greater of Two Values

The input is two values of the same type. The values can be of int, char or string type. Create a
method GetMax() that returns as a result the greater of the two values.

Sample Input and Output

Input Output Input Output Input Output

 int
 2
 16

16

 char
a
z

z

 string
 Ivan
 Tod

Tod

Creating the Methods

We need to create three methods with the same name and different signatures. First we create a
method, which will compare integers.

Chapter 10. Methods 379

Following the logic of the previous method we create another one with the same name, but this one
will compare characters.

The next method we need to create will compare strings. The logic here is a bit different from the
previous two methods because variables of string type cannot be compared with the operators <
and >. We will use the method CompareTo(…), which returns a numerical value: larger than 0 (the

compared object is larger), smaller than 0 (the compared object is smaller) and 0 (the two objects are
the same).

Reading the Input Data and Using the Methods

The last step is to read the input data, to use the appropriate variables and to invoke the method
GetMax() from the body of the Main()method.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#6.

https://judge.softuni.org/Contests/Practice/Index/594#6

380 Programming Basics with C#

Nested Methods (Local Functions)
Let's examine the following example:

What Is a Local Function?

We can see that in this code the Main() method has another declared method Result(). This nested
method is called local function.

Local functions can be declared inside every other method. When the C# compiler compiles such
functions, they are turned into private methods. Because you will learn about the difference between
public and private methods later, we can now say that private can be used only in the class, in
which they have been declared. The programs that we write at this level are using only one class,
therefore we can say that we can use nested methods without any concerns.

Why Use Local Functions?

With time and practice you will see that when you are writing code, you often need methods that you
only need once, or the method you need gets very long. We said earlier that when a method contains
too many lines of code it becomes hard to read and maintain.

This is where local functions come in handy – they help us declare a new method in another one we
already have, and it will be used only once. This helps making our code better ordered and easier to
read, which helps for faster correction if there is an error in the code and limits the possibility for
mistakes when making changes in the program logic.

Declaring Local Functions

Let's look again at the previously mentioned example:

Chapter 10. Methods 381

In this example the Result() method is a local function, because it is nested in the Main() method,
i.e. Result() is local for Main(). This means that the Result() method can only be used in the

Main() method, because it's declared inside it. The only difference between nested and normal
methods is that nested methods can't be static. Because the definition for static will be seen later,
we will say for the moment that when declaring a local function, we write only the return value type,
the name of the method and its list of parameters. In this case this is double Result(double a,
double b).

Local functions can access variables, which are in the method containing them. The next example
demonstrates how this is happening:

This feature of nested methods makes them very helpful when solving a problem. They save time and
code, which we would otherwise lose to give them parameters and variables, which we can already
use in nested methods.

Naming Methods
When you name methods, use meaningful names.

• Because every method handles a part of our problem, when naming it we should keep in mind
the action it does, i.e. it is a good practice for the name to describe what the method does.

• Each method must do only one task and its name should describe this task. This principle in
programming is known as “strong cohesion”.

• In C# the method name must start with uppercase letter and should be made of a verb or a
couple: verb + noun. The name is formatted by following the Upper Camel Case convention
(PascalCase), i.e. each word, including the first one, starts with uppercase.

• The brackets (and) always follow the name (without spaces).

A few examples for correctly named methods:

• FindStudent, LoadReport, Sine

A few examples for incorrectly named methods (think why):

• Method1, DoSomething, HandleStuff, SampleMethod, DirtyHack

If you cannot think of an appropriate name, then the method most probably solves more than one
task or doesn't have a clearly defined purpose and in this case you have to think how to split it into
several simpler methods.

Naming Method Parameters

When naming the parameters of a method you can apply almost the same rules as with the methods
themselves. The difference here is that it is good for the names of the parameters to use a noun or a
couple of an adjective and a noun, and when naming the parameters, we use the lowerCamelCase

382 Programming Basics with C#

convention, i.e. each word except for the first one starts with uppercase. We should note that it is a
good practice that the name of the parameter shows what unit is used when working with it.

A few examples for correctly named parameters:

• firstName, report, speedKmH, usersList, fontSizeInPixels, font

A few examples for incorrectly named parameters:

• p, p1, p2, populate, LastName, last_name

Good Practices When Working with Methods
Let's remind you that a method should do only one defined task. If this cannot be done, you must
think how to split the method into a few, smaller ones. As we already said the name of the method
should be clear and should describe its purpose. Another good practice in programming is to avoid
methods, which are longer than a typical screen size (approximately). If the code still becomes large it
is recommended to split it into several, shorter methods, as in the example below.

Code Structure and Formatting

When writing methods, we should be careful to use correct indentation (moving blocks of the code
to the right).

Example for correctly formatted C# code:

Example for incorrectly formatted C# code:

When the declaration line of the method is too long, it is recommended to split it into several lines, as
each line after the first one is two tabulations to the right of the first one (for better readability):

Another good practice when writing code is to leave an empty line between the methods, after loops
and conditional statements. Also try to abstain from writing long lines and complicated expressions.
With time you will see that this makes the readability better and saves time.

It is also recommended to always use curly brackets for the bodies of conditional statements and
loops. The brackets not only improve readability, but also reduce the possibility to make a mistake and
the program to run incorrectly.

Chapter 10. Methods 383

Exercises: Methods
In order to learn in practice what we have learned about methods we will solve a few problems, in
which it will be required to write methods with certain functionality and after that to invoke them by
passing them data, read from the console.

What We Learned in This Chapter?

Before starting, let's review what we have learned about the methods in C#:

• We learned that the purpose of methods is to split big programs with a lot of lines of code into
smaller, shorter tasks.

• We introduced ourselves with the structure of methods, how to declare them and invoke them
by their name.

• We went over examples for methods with parameters and how to use them in our program.

• We learned what signature and return value of a method is and also what is the purpose of the
operator return.

• We introduced ourselves with the good practice when working with methods, how to name
them and their parameters, how to format code, etc.

Defining a Method

This is how we define a method, which takes a parameter and returns a value:

static double CircleArea(double radius)
{
 return Math.PI * radius * radius;
}

The above example defines a method called “CircleArea”, which takes as a parameter a number
(double) and returns as result a number (double).

Invoking a Method

This is how we invoke a method, pass a parameter value (argument) for the invocation and process
the returned value:

Console.WriteLine("a = {0}, area = {1}", 5.33, CircleArea(5.33));
// a = 5.33, area = 89.2491915365671

Console.WriteLine("a = {0}, area = {1}", 9.999, CircleArea(9.999));
// a = 9.999, area = 314.0964366475

Problem: "Hello, Name!"

Write a method which takes a name as a parameter and prints on the console "Hello, {name}!".

Sample Input and Output

Input Output

Peter Hello, Peter!

384 Programming Basics with C#

Hints and Guidelines

Define a method PrintName(string name) and implement it, after which read a name from the
console in the main program and invoke the method by feeding it the name.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#7.

Problem: Min Method - Return the Smaller Number

Create a method GetMin(int a, int b), which returns the smaller of given two numbers. Write a
program, which takes as input three numbers and prints the smallest of them. Use the method
GetMin(int, int), which you have already created.

Sample Input and Output

Input Output Input Output

1
2
3

1
-100
-101
-102

-102

Hints and Guidelines

Define a method GetMin(int a, int b) and implement it, after which invoke it from the main
program as shown below. In order to find the minimum of three numbers, first find the minimum of
the first two and then the minimum of the result and the third number:

var min = GetMin(GetMin(num1, num2), num3);

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#8.

Problem: String Repeater

Create a method RepeatString(str, count), which takes parameters of type string and an
integer n and returns the string, repeated n times. After this print the result on the console.

Sample Input and Output

Input Output Input Output

str
2

strstr
roki
6

rokirokirokirokirokiroki

Hints and Guidelines

In the method below, inside the loop, append the input string to the result, that you will finally return:

https://judge.softuni.org/Contests/Practice/Index/594#7
https://judge.softuni.org/Contests/Practice/Index/594#8

Chapter 10. Methods 385

Keep in mind that in C# concatenating strings in loops leads to bad performance and is not
recommended. Learn more at: https://docs.microsoft.com/dotnet/api/system.text.stringbuilder#the-
string-and-stringbuilder-types.

Look for more effective solutions here: https://stackoverflow.com/questions/411752.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#9.

Problem: Nth Digit

Create a method FindNthDigit(number, index), which takes a number and index N as parameters
and prints the Nth digit of the number (counting from right to left and starting from 1). After that print
the result on the console.

Sample Input and Output

Input Output Input Output Input Output

83746
2

4
 93847837

6
8

 2435
4

2

Hints and Guidelines

In order to do the algorithm use a while loop, until the given number equals 0. At each iteration of
the while loop check if the current index of the digit is equal to the index you are looking for. If it is,

return as a result the digit at this index (number % 10). If not, remove the last digit in the number
(number = number / 10). You should count which digit you are checking by index (from right to left
and starting from 1). When you find the number, return the index.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#10.

Problem: Integer to Base

Write a method IntegerToBase(number, toBase), which takes as parameters an integer and a base
of a numeral system and returns the integer converted to the given numeral system. After this the
result should be printed on the console. The input number will always be in decimal numeral system,
and the base parameter will be between 2 and 10.

Sample Input and Output

Input Output Input Output Input Output

3
2

11
 4

4
10

 9
7

12

https://docs.microsoft.com/dotnet/api/system.text.stringbuilder#the-string-and-stringbuilder-types
https://docs.microsoft.com/dotnet/api/system.text.stringbuilder#the-string-and-stringbuilder-types
https://stackoverflow.com/questions/411752
https://judge.softuni.org/Contests/Practice/Index/594#9
https://judge.softuni.org/Contests/Practice/Index/594#10

386 Programming Basics with C#

Hints and Guidelines

In order to solve the problem, we will declare a string, in which we will keep the result. After this we
need to do the following calculations to convert the number.

• Calculate the remainder of the number, divided by the base.

• Insert the remainder in the beginning of the string.

• Divide the number to the base.

• Repeat the algorithm, until the input integer reaches 0.

Write the missing logic in the method below:

static string IntegerToBase(int number, int toBase) {
 string result = "";
 while (number != 0) {
 // Implement the missing conversion logic
 }
 return result;
}

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#11.

Problem: Notifications

Write a program, which takes an integer n and n input messages and prints n output messages, based

on the input. For each message read a few lines. Each message starts with messageType: “success”,
“warning” or “error”:

• If messageType is “success” read operation + message (each from a new line).

• If messageType is “warning” read only message (from a new line).

• If messageType is “error” read operation + message + errorCode (each from a new line).

Print on the console each read message, formatted depending on its messageType. After the headline
of the message print as much “=”, as the length of the printed headline and print an empty line after
each message (to understand in detail look at the examples).

Sample Input and Output

Input Output

4

error
credit card purchase
Invalid customer address
500

warning
Email not confirmed

success
user registration
User registered successfully

Error: Failed to execute credit card purchase.
==
Reason: Invalid customer address.
Error code: 500.

Warning: Email not confirmed.
=============================

Successfully executed user registration.
==
User registered successfully.

https://judge.softuni.org/Contests/Practice/Index/594#11

Chapter 10. Methods 387

Input Output

warning
Customer has not email assigned

Warning: Customer has not email assigned.
===

The problem should be solved by defining the following four methods: ShowSuccessMessage(),
ShowWarningMessage(), ShowErrorMessage() and ReadAndProcessMessage(), so that only the
last method is invoked by the Main() method:

Hints and Guidelines

Define and implement the four shown methods. In ReadAndProcessMessage() read the type of
message from the console and according the read type read the rest of the data (one, two or three
more lines). After that invoke the method for printing the given type of message.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#12.

Problem: Numbers to Words

Write a method Letterize(number), which reads an integer and prints it in words in English
according to the conditions below:

• Print in words the hundreds, the tens and the ones (and the eventual minus) according to the
rules of the English language.

• If the number is larger than 999, you must print "too large".

• If the number is smaller than -999, you must print "too small".

• If the number is negative, you must print "minus" before it.

• If the number is not built up of three digits, you shouldn't print it.

Sample Input and Output

Input Output

Input Output

3

999
-420
1020

nine-hundred and ninety nine
minus four-hundred and
twenty
too large

2

15
350

fifteen
three-hundred and fifty

4

311
418
509
-9945

three-hundred and eleven
four-hundred and eighteen
five-hundred and nine
too small

3

500
123
9

five-hundred
one-hundred and twenty three
nine

https://judge.softuni.org/Contests/Practice/Index/594#12

388 Programming Basics with C#

Hints and Guidelines

We can first print the hundreds as a text – (the number / 100) % 10, after that the tens – (the number
/ 10) % 10 and at the end the ones – (the number % 10).

The first special case is when the number is exactly rounded to 100 (e.g. 100, 200, 300 etc.). In this
case we print "one-hundred", "two-hundred", "three-hundred" etc.

The second special case is when the number formed by the last two digits of the input number is less
than 10 (e.g. 101, 305, 609 etc.). In this case we print "one-hundred and one", "three-hundred and
five", "six-hundred and nine" etc.

The third special case is when the number formed by the last two digits of the input number is larger
than 10 and smaller than 20 (e.g. 111, 814, 919 etc.). In this case we print "one-hundred and eleven",
"eight-hundred and fourteen", "nine-hundred and nineteen" etc.

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#13.

Problem: String Encryption

Write a method Encrypt(char letter), which encrypts a given letter in the following way:

• It takes the first and the last digit from the ASCII code of the letter and concatenates them into
a string, which will represent the result.

• In the beginning of the string, which represents the result, we will insert the symbol which
matches the following condition:

o ASCII code of the letter + the last digit of the ASCII code of the letter.

• After that in the end of the string, which represents the result, you concatenate the character
which matches the following condition:

o ASCII code of the letter - the first digit of the ASCII code of the letter.

• The method should return the encrypted string.

Example:

• j → p16i

o ASCII code of j is 106 → First digit – 1, last digit – 6.

o We concatenate the first and the last digit → 16.

o At the beginning of the string, which represents the result, concatenate the symbol, which
you get from the sum of the ASCII code + the last digit → 106 + 6 → 112 → p.

o At the end of the string, which represents the result, concatenate the symbol, which you
get from subtracting the ASCII code – the first digit → 106 - 1 → 105 → i.

Using the method shown above, write a program which takes a sequence of characters, encrypts them
and prints the result on one line.

The input data will always be valid. The Main method must read the data given by the user – an
integer n, followed by a character for each of the following n lines.

Encrypt the symbols and add them to the encrypted string. In the end, as a result, you must print an
encrypted string as in the following example.

Example:

• S, o, f, t, U, n, i → V83Kp11nh12ez16sZ85Mn10mn15h

https://judge.softuni.org/Contests/Practice/Index/594#13

Chapter 10. Methods 389

Sample Input and Output

Input Output Input Output

7
S
o
f
t
U
n
i

V83Kp11nh12ez16sZ85Mn10mn15h

 7
B
i
r
a
H
a
x

H66<n15hv14qh97XJ72Ah97x
x10w

Hints and Guidelines

Firstly, we will give a value of string.Empty to the string, which will keep the result. We must
recur a loop n times, so that in each iteration we will add the encrypted symbol to the result string.

In order to find the first and the last digit of the ASCII code, we will use the same algorithm that we
used to solve "Integer to Base".

Testing in the Judge System

Test your solution here: https://judge.softuni.org/Contests/Practice/Index/594#14.

https://judge.softuni.org/Contests/Practice/Index/594#14

https://softuni.org

Chapter 11. Tricks and Hacks
In the current chapter we are going to see some tricks, hacks and techniques, which will make our
work with C# easier in the Visual Studio IDE. In particular, we will see:

• How to properly format our code

• Conventions for naming elements in the code

• Some keyboard shortcuts

• Some code snippets

• Techniques to debug our code

Code Formatting
The right formatting of our code will make it easier to read and understand in case someone else
needs to work with it. This is important, because in practice we will need to work in a team with other
people and it is highly important to write our code in a way that our colleagues can quickly understand.

There are some defined rules for correct formatting of the code, which are collected in one place and
are called conventions. The conventions are a group of rules, generally accepted by the programmers
using a given language, which are massively used. These conventions help building norms in given
languages – what is the best way to write and what are good practices. It is accepted that if a
programmer follows them then his code is easy to read and understand.

The C# language is made by Microsoft and they are the people who define the best practices for
writing. You should know that even if you don't follow the conventions given by Microsoft, your code
will work (as long as it is properly written), but it will not be easy to understand. This, of course, is not
fatal at base level, but the faster you get used to writing quality code the better.

The Official C# Code Conventions

The official C# code conventions by Microsoft are published in the "C# Coding Conventions" article
in the .NET documentation and in this book we shall follow them: https://docs.microsoft.com/
/dotnet/csharp/programming-guide/inside-a-program/coding-conventions.

For code formatting Microsoft recommends curly brackets {} to be on a separate line and just below
the construction to which they apply, as in the example below:

if (someCondition)
{
 Console.WriteLine("Inside the if statement");
}

You can see that the command Console.WriteLine(…) in the example is offset by 4 white spaces
(one tab), which is also recommended by Microsoft. If given construction with curly brackets is offset
by one tab, then the curly brackets {} must be in the beginning of the construction, as in the example
below:

if (someCondition)
{
 if (anotherCondition)
 {
 Console.WriteLine("Inside the if statement");
 }
}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

392 Programming Basics with C#

Below you can see an example for badly formatted code according to the accepted conventions for
writing code in C#:

if(someCondition){
Console.WriteLine("Inside the if statement");}

The first thing that we see is the curly brackets {}. The first (opening) bracket should be just below
the if condition, and the second (closing) bracket – below the command Console.WriteLine(…),
at a new and empty line. In addition, the command inside the if construction should be offset by 4
white spaces (one tab). Just after the keyword if and before the condition you should put a space.

The same rule applies for the for loops and all other constructions with curly brackets {}. Here are
some more examples:

Correct formatting:

for (int i = 0; i < 5; i++)
{
 Console.WriteLine(i);
}

Wrong formatting:

for(int i=0;i<5;i++){
Console.WriteLine(i);
}

Code Formatting Shortcuts in Visual Studio

For your comfort there are
keyboard shortcuts in Visual
Studio, which we will explain
later in this chapter, but for
now we are interested in two
specific combinations. The
first is for formatting the code
in the entire program, and the
second one – for formatting a
part of the code. If we want to
format the entire code, we
need to press [CTRL + K + D].
In case we need to format only
a part of the code, we need to
mark this part with the mouse
and press [CTRL + K + F].

Let's use the wrongly formatted example from earlier:

for(int i=0;i<5;i++){
Console.WriteLine(i);
}

If we press [CTRL + K + D], which is the combination to format the whole document, we will have a
code, formatted according to the accepted conventions for C#, which will look as follows:

Chapter 11. Tricks and Hacks 393

for (int i = 0; i < 5; i++)
{
 Console.WriteLine(i);
}

This key combination in Visual Studio can help us if we work with a badly formatted code.

Naming Code Elements
In this section we will focus on the accepted conventions for naming projects, files and variables,
defined by Microsoft.

Naming Projects and Files

It is recommended to use a descriptive name for naming projects and files, which suggests the role of
the respective file / project and at the same time the PascalCase convention is also recommended.
This is a convention for naming elements, in which each word, including the first one, starts with an
uppercase character, for example ExpressionCalculator.

Example: this course starts with a First steps in coding lecture, therefore an exemplary name for the
solution for this lecture can be FirstStepsInCoding. The same convention applies for the files in a
project. If we take for example the first problem in the First steps in coding lecture, it is called Hello
World, therefore our file in the project will be called HelloWorld.

Naming Variables

In programming variables keep data, and for the code to be more understandable, the name of a
variable should suggest its purpose. Here are some recommendations for naming variables:

• The name should be short and descriptive and to explain what the variable serves for.

• The name should only contain the letters a-z, A-Z, the numbers 0-9, and the symbol '_'.

• It is accepted in C# for the variables to always begin with a lowercase letter and to contain
lowercase letters, and each next word in them should start with an uppercase letter (this naming
is also known as camelCase convention).

• You should be careful about uppercase and lowercase letters, because C# distinguishes them.
For example, age and Age are different variables.

• The names of the variables cannot coincide with keywords in the C# language, for example int
is an invalid name for a variable.

Although using the symbol _ in the names of variables is allowed, in C# it is not
recommended and is considered a bad style of naming.

Naming – Examples

Here are some examples for well named variables:

• firstName

• age

• startIndex

• lastNegativeNumberIndex

394 Programming Basics with C#

Here are some examples for badly named variables, even though the names are correct according to
the C# compiler:

• _firstName (starts with '_')

• last_name (contains '_')

• AGE (written in uppercase)

• Start_Index (starts with an uppercase letter and contains '_')

• lastNegativeNumber_Index (contains '_')

At a first look all these rules can seem meaningless and unnecessary, but with time passed and
experience gaining you will see the need for conventions for writing quality code in order to be able
to work more easily and faster in a team. You will understand that the work with a code, which is
written without complying with any rules for code quality, is annoying.

Shortcuts in Visual Studio
In the previous section we mentioned two of the combinations that are used for formatting code. One
of them [CTRL + K + D] is used for formatting the whole code in a file, and the second one [CTRL +
K + F] serves if we want to format just a piece of the code. These combinations are called shortcuts
and now we will give more thorough information about them.

Shortcuts are combinations that give us the possibility to do some things in an easier and faster way,
and each IDE has its shortcuts, even though most of them are recurring. Now we will look at some of
the shortcuts in Visual Studio:

Combination Action

[CTRL + F] Opens the search window, by which we can search in the code.

[CTRL + K + C] Comments part of the code.

[CTRL + K + U] Uncomments a code, which is already commented.

[CTRL + Z] Brings back one change (so-called Undo).

[CTRL + Y] The combination is opposite of [CTRL + Z] (the so-called Redo).

[CTRL + K + D] Formats the code according the default conventions.

[CTRL + Backspace] Deletes the word to the left of the cursor.

[CTRL + Del] Deletes the word to the right of the cursor.

[CTRL + Shift + S] Saves all files in the project.

[CTRL + S] Saves the current file.

More information about the keyboard shortcuts in Visual Studio can be found at this Web site:
https://shortcutworld.com/en/Visual-Studio/2015/win/all.

Code Snippets in Visual Studio
In Visual Studio there are the so-called code snippets, which write a block of code by using a code
template. For example, by writing the short code “cw” and then pressing [Tab] + [Tab] the

https://shortcutworld.com/en/Visual-Studio/2015/win/all

Chapter 11. Tricks and Hacks 395

Console.WriteLine();

code is generated in the body of our program, in the place of the short code. This is called “unfolding
a code snippet”. The “for” + [Tab] + [Tab] snippet works in the same way. On the figure below you
can see the “cw” snippet in action:

Creating Your Own Code Snippet
In this section we are going to show you how
to make your own code snippet. We will see
how to make a code snippet for quick typing
of Console.ReadLine().

In order to begin we must create a new empty
project in Visual Studio and go to [Tools ->
Code Snippets Manager], as shown on the
screenshot on the right.

Exploring the Existing Code
Snippets for C#

In the window that VS will open, we should choose Language → CSharp, and from the section
Locations → Visual C#. This is where all the existing snippets for C# are located:

396 Programming Basics with C#

We choose a snippet, for example cw, we take the path to its file and open it in Visual Studio:

We see many things we haven't seen yet, but don't worry, we will become acquainted with them later.

Changing an Existing Snippet

To create a new code snipped, we shall take an existing snipped, modify its code and save it in a new
snipped file.

We have to focus on the part <Title></Title>, <Shortcut></Shortcut> and the code between
CDATA[].

• Firstly, we will change the title in <Title></Title> and in the place of cw we will write cr, as
this will be the title of our snippet.

• After that, in the section <Shortcut></Shortcut>, we will change what we have to write to
call our snippet (the shortcut) from cw to cr.

• Finally, we need to change the code in the CDATA[] section from WriteLine to ReadLine:
CDATA[$SystemConsole$.ReadLine(end);].

• If you want to import some class, you may change the <Declarations></Declarations>
section.

• If you wish, you can change accordingly also the sections <Description></Description>
and <Author></Author>.

The changed file, after all described modifications, should look like this:

Chapter 11. Tricks and Hacks 397

Saving and Testing the Code Snippet

After we have written our snippet, we should save the file in format snippetName.snippet (in this
case cr.snippet) and add it to Visual Studio. Go to [Tools] -> [Code Snippet Manager] -> [Import]
and choose the cr.snippet file that we have created:

Now when we write “cr” and press [Tab] twice in Visual Studio, our new snippet will appear, as it is
shown in the screenshot below:

398 Programming Basics with C#

Code Debugging Techniques
Debugging plays an important role in the process of creating software, which is to allow us to follow
the implementation of our program step by step. With this technique we can follow the values of the
local variables, because they are changing during the execution of the program, and to remove
possible errors (bugs). The process of debugging includes:

• Finding the problems (bugs).

• Locating the code, which causes the problems.

• Correcting the code, which causes the problems, so that the program works correctly.

• Testing to make sure that the program works correctly after the corrections we have made.

Debugging in Visual Studio

Visual Studio gives us a built-in debugger, thanks to which we can place breakpoints at places we have
chosen. When it reaches a breakpoint, the program stops running and allows step-by-step running of
the remaining lines. Debugging allows us to get in the details of the program and see where exactly
the errors occur and what is the reason for this.

In order to demonstrate how to use the debugger in VS, we will use the following C# program:

static void Main(string[] args)
{
 for (int i = 0; i < 100; i++)
 {
 Console.WriteLine(i);
 }
}

We will place a breakpoint (a
stopper) at start of the line holding
Console.WriteLine(…). For this
we will need to move the mouse
cursor to the line, which prints on
the console, and press the [F9]
key. A red breakpoint will appear,
pointing where the program will
stop running (see the screenshot).

Now the program is configured
for debugging in the Visual Studio
IDE, using breakpoints. It is time to
start it through the debugger (in
the so called “debug mode”) and
trace its execution step by step.

Chapter 11. Tricks and Hacks 399

Starting the Program in Debug Mode

In order to start the program in debug mode, we
choose [Debug] -> [Start Debugging] or press the [F5]
key (see the screenshot).

After starting the program, we can see that it will stop
executing at line 11, where we placed our breakpoint.

The code in the current line when the debugger is
stopped is colored in yellow and we can run it step by
step. In order to execute the next line, we use the [F10]
or the [F11] key.

We can see that the code on the current line hasn't
executed yet and it is displayed in yellow. It will execute
when we go ahead with the debugging the next line.

The screenshot below shows the integrated Visual
Studio debugger, stopped at the breakpoint and
waiting for the developer to decide what to do (e.g.
execute the next command or stop the program):

From the Locals window we can observe the local variables over the time or modify their values at
runtime. In order to open the window, you must choose [Debug] -> [Windows] -> [Locals].

400 Programming Basics with C#

Tricks for C# Developers
In this section we will recall some tricks and techniques in programming with C#, already seen in this
book, which can be very useful if you attend an exam for beginner programming.

Inserting Variable Values in Strings

In programming we often need to combine text with variable values to obtain a string value, e.g.

var text = "some text";
Console.WriteLine("{0}", text);
// This will print on the console "some text"

In this case we are using a placeholder – {x}, where x is a number (larger than or equal to 0),
corresponding to the position on which we have placed our variable. Therefore, if we insert two
variables, we will have one placeholder, which will be {0} and it will keep the value of the first variable
and another one – {1}, which will keep the value of the second variable. For example:

var text = "some text";
var number = 5;
Console.WriteLine("{0} {1} {0}", text, number);
// This will print "some text 5 some text"

In this example we can see that we can insert not only text variables. We can also use a given variable
several times and for this we put the number which corresponds with the position of the variable in
the placeholder. In this case on position zero is the variable text, and at first position is the variable
number. At the beginning, numbering can be confusing, but you need to remember that in
programming counting starts from 0.

Formatting with 2 Digits After the Decimal Point

When we print numbers, we often need to round them to 2 digits after the decimal point, e.g.

var number = 5.432432;
Console.WriteLine(Math.Round(number, 2));
// This will print on the console "5.43"

Rounding Numbers

To round numbers, we may use the Math.Round(…) method, which takes 2 parameters:

• the first one is the number we want to round

• the second one is the number that determines how many digits after the decimal point we want
to round to (this should always be an integer)

If we want to round the number to 2 digits after the decimal point and the third digit is lower than 5,
as in the example above, the rounding is down, but if the third digit is equal or bigger than 5 – the
rounding is up as in the example below:

var number = 5.439;
Console.WriteLine(Math.Round(number, 2));
// This will print on the console "5.44"

Chapter 11. Tricks and Hacks 401

Other Rounding Methods

In case we always want to round down instead of Math.Round(…) we can use another method

Math.Floor(…), which always rounds down, but also always rounds to an integer. For example, if we
have the number 5.99 and we use Math.Floor(5.99), we will get the number 5.

We can also do the exact opposite – to always round up using the method Math.Ceiling(…). Again,

if we have for example 5.11 and we use Math.Ceiling(5.11), we will get 6. Here are some
examples:

var numberToFloor = 5.99;
Console.WriteLine(Math.Floor(numberToFloor));
// This will print on the console 5

var numberToCeiling = 5.11;
Console.WriteLine(Math.Ceiling(numberToCiling));
// This will print on the console 6

Rounding with a Placeholder

var num = 5.432424;
Console.WriteLine("{0:f2}", num);

In this case after the number we add :f2, which will limit the number to 2 digits after the decimal
point and will work like Math.Round(…). You should keep in mind that the number after the letter f
means to how many digits after the decimal point the number is rounded (i.e. it can be f3 or f5).

How to Write a Conditional Statement?

The conditional if construction contains the following elements:

• Keyword if + a Boolean expression (condition)

• Body of the conditional construction

• Optional: else clause

Example:

if (condition)
{
 // body
}
else (condition)
{
 // body
}

To make it easier we can use a code snippet for an if construction:

• if + [Tab] + [Tab]

How to Write a 'For' Loop?

For a for loop we need a couple of things:

402 Programming Basics with C#

• Initializing block, in which the counter variable is declared (var i) and its initial value is set

• Condition for repetition (i <= 10)

• Loop variable (counter) updating statement (i++)

• Body of the loop, holding statements

Example:

for (var i = 0; i < 5; i++;)
{
 // body
}

To make it easier we can use a code snippet for a for loop:

• for + [Tab] + [Tab]

What We Learned in This Chapter?
In the current chapter we learned how to correctly format and name the elements of our code, some
shortcuts in Visual Studio, some code snippets, and we analyzed how to debug the code.

Conclusion
If you have read the entire book and you've solved all the problems from the exercises and reached
the present conclusion, congratulations! You've already made the first step in learning the profession
of a programmer, but there is a long way to go until you become really good and make software
writing your profession.

Developer Skills
Remember the four main groups of skills (see the Preface chapter) that each programmer must have
in order to work in the industry:

• Skill #1 – writing the program code (20% of programmer's skills) – covered to a large degree by
this book, but you must learn additional basic data structures, classes, functions, strings and
other elements of code writing.

• Skill #2 – algorithmic thinking (30% of programmer's skills) – covered partially by this book and
developed mostly by solving a large amount of diverse algorithmic problems.

• Skill #3 – fundamental understanding of the profession (25% of programmer's skills) – acquired
for a few years in combination with learning and practice (reading books, watching video lessons,
attending courses and mostly by writing diverse projects in various technological areas).

• Skill #4 – programming languages and software technologies (25% of programmer's skills) –
acquired in a long period of time, by a lot of practice, consistent reading and writing projects.
Such knowledge and skills quickly get outdated and need to be updated frequently. Good
programmers are involved in studying new technologies every day.

This Book is Only the First Step!
The present book on programming basics is just the first step in building the skills of a programmer. If
you were able to solve all problems, this means you have obtained valuable knowledge in the
programming principles with C# on a basic level. You are about to start in-depth studying of
programming, and develop your algorithmic thinking, and then add technological knowledge regarding
the C# language and the .NET ecosystem (.NET Framework, .NET Core, Entity Framework, ASP.NET,
etc.), front-end technologies (HTML, CSS, JavaScript) and many other concepts, technologies and
instruments for software development.

If you were not able to solve all problems or a large part of them, go back and solve them! Remember
that becoming a programmer requires a lot of work and efforts. This profession is not for lazy people.
There is no way to learn it, unless you seriously practice programming for years!

As we already explained, the first and basic skill of a programmer is to learn to write code with ease
and pleasure. This is namely the mission of this book: to teach you how to code. We recommend you,
besides reading the book, to enroll in the practical course "Programming Basics" at SoftUni
(https://softuni.org), which is offered for free, in on-site or online format of training.

How to Proceed After This Book?
This book gives you solid grounds, thanks to which it will be easy for you to continue developing as
programmers. If you wonder how to continue your development, you have the following possibilities:

• to study for a software engineer at SoftUni and make programming your profession;

• to continue developing as a programmer in your own way, for example through self-training or
via online lessons;

• to stay at coder level, without going more seriously into programming.

https://softuni.org/apply
https://softuni.org/

404 Programming Basics with C#

Study Software Engineering in SoftUni
The first, and respectively recommended option to master fully and on high level the profession of a
"software engineer", is to start your training via the end-to-end SoftUni program for software
engineers: https://softuni.org. The SoftUni curriculum and the interactive learning platform for
developers are carefully developed by Dr. Svetlin Nakov and his team, in order to provide you
consequently and with gradually increasing complexity all the skills that a software engineer must
have, in order to start a career as a software developer in an IT company.

Training Duration in SoftUni

The training in SoftUni has a duration of 1-2 years (depending on the profession and the selected
specializations) and during that period it is normal to reach a good starting level (junior developer), but
this is only if you study seriously and write code intensely every day. Upon having good grades, a
typical student starts a job around the middle of the training (after around 1.5 years). Thanks to the
well-developed partners network, the career center of SoftUni offers work in a software or IT
company to all SoftUni students who have very good or excellent grades. Starting a job in the major
in case of having good grades at SoftUni, combined with willingness to work and reasonable
expectations towards the employers, is almost guaranteed.

Becoming a Programmer Takes at Least a Year!

Keep in mind that to become a programmer takes a lot of efforts, writing tens of thousands of lines
of code, and solving hundreds, even thousands of practical problems, and this takes years! If someone
offers you "an easier program" and promises you to become a programmer and start working within
3-4 months, then either they are lying to you, or they will give you such a low level, that companies
won't even take you as a trainee, even if you pay to the company that is wasting its time with you.
There are exceptions, of course, for example if you are not starting from scratch, or if you have
extremely well-developed engineering thinking, or if you apply for a very low position (for example

https://softuni.org/

Conclusion 405

technical support), but in general, you cannot become a programmer if you haven't spent at least 1
year of intense learning and code writing!

The Entrance Exam in SoftUni

In order to enroll at SoftUni you need to attend an entrance exam in "Programming Basics" on the
material from this book. If you easily solve the problems in this book, then you are ready for the exam.
Also, pay attention to the chapters on preparation for the practical exam in programming. They will
give you a good idea of the level of difficulty of the exam and the types of tasks that you need to
learn solving.

If the tasks from the book and the preparation examples are hard for you, then you need more
preparation. Enroll for the free course in "Programming Basics" or go through the book carefully one
more time, without skipping solving the problems in any of the studied topics! You must learn how to
solve them with ease, without helping yourselves with the guidelines and the sample solutions.

The SoftUni Curriculum for Software Engineers

What follows after the entrance exam is a serious curriculum in the SoftUni program for training
software engineers. It is formed as a sequence of modules in a number of courses in programming
and software technologies, fully directed towards gaining fundamental knowledge in software
development and acquiring practical skills for working as a programmer with the most contemporary
software technologies. Students are given a choice between a number of professions and
specializations focused on C#, Java, JavaScript, Python, PHP and other languages and technologies.
Each profession is trained in a number of modules with 4 months duration, and each module consists
of 2 or 3 courses. The classes are divided into theoretical preparation (30%) and practical exercises,
projects and trainings (70%), and each course ends with a practical exam or practical academic project.

How Many Hours per Day Does the Training Take?

The training for software engineers at SoftUni is a very serious occupation and you need to spend on
it at least 4-5 hours every day, preferably your entire attention and time. Combining working and
training is not always successful, but if you work something easy and you have a lot of spare time, it
is a good option. SoftUni is an appropriate option for school students, university students and people
who work, but it is best if you assign your entire time to your training and mastering the profession.
It will not work if you spend 2 or 4 hours a week on it!

The forms of training at SoftUni are on-site (the better choice) and online (if you don't have another
option). In both forms of training, in order to learn the program in the curriculum (that is required by
software companies for starting a job), you need a lot of learning. You just need to find the time for
it! Reason #1 for having hard time on the road to the profession in SoftUni is not spending enough
time for the training: as a minimum you need to spend at least 20-30 hours a week.

SoftUni for People Who Work and Study

We recommend to everyone who gets excellent score at the SoftUni entrance exam and are really
passionate about making programming their profession, to leave the rest of their commitments aside
and spend their entire time on learning the profession of a "software engineer" and start making a
living through it.

• For people who work this means quitting their job (and getting a loan or decreasing their
expenses, in order to spend with a lower income a period of 1-2 years until they start working
in the new profession).

https://softuni.org/apply

406 Programming Basics with C#

• For people who study in a traditional university, this means to move significantly their focus
towards programming and the practical courses in SoftUni, by decreasing the time spend in the
traditional university.

• For unemployed people this is an excellent chance to assign their entire time, power and energy
on acquiring a new, perspective, well paid and highly sought profession, that will give them good
life quality and a long-term prosperity.

• For students in secondary schools and high schools this means giving a priority to what is more
important in their development: studying practical programming in SoftUni, that will give them
a profession and a job, or giving their full attention to the traditional education system or
combining smartly both undertakings. Unfortunately, often priorities are determined by parents,
and we don't have a solution for these cases.

We recommend to all who cannot get an excellent score at the SoftUni entrance exam to spend more
time on better learning, understanding, and most of all, practicing the material studied in the present
book. If you cannot easily solve the problems in this book, you will not be able to cope with
programming and software development in the future.

Do not skip the programming basics! Do not under any circumstances make bold decisions and quit
your job or the traditional university, making great plans for your future profession of a software
engineer, if you don't have an excellent grade at the SoftUni entrance exam! It measures if
programming is suitable for you, to what extend you like it and if you are motivated to study it
seriously, and work this for years every day with joy and pleasure.

Study Software Engineering in Your Own Way
Another possibility to develop after this book is to continue studying programming outside of SoftUni.
You can enroll or subscribe to video trainings that go into more details in programming with C# or
other languages and development platforms. You can read books on programming and software
technologies, follow online tutorials and other online resources – there are plenty of free materials on
the Internet. However, keep in mind that the most important thing towards the profession of a
programmer is to do practical projects!

You cannot become a programmer without a lot of code writing and intense practicing. Allocate
sufficient time to it. You cannot become a programmer for a month or two. On the Internet you will
find a wide variety of free resources, such as books, manuals, video lessons, online and on-site courses
on programming and software development. However, you need to invest at least a year or two to
acquire a foundation level, needed for starting a job.

After you gain some experience, find a way to start an internship in a company (which will be almost
impossible unless you'd spent at least a year of intense code writing before that) or come up with
your own practical project, on which you need to spend a few months, even a year, in order to learn
based on the trial-and-error principle.

Keep in mind that there are many ways to become a programmer, but they all have
something in common: intense code writing and years of practice!

Recommended Resources for Developers
A huge amount of resources is available on the Web for developers: online trainings, courses, tutorials,
books, interactive training sites, etc.

Conclusion 407

We cannot mention all of them, because they change over the time and because the list might be
huge. What we recommend is to join the developer communities in your region, because this will help
you a lot when you study.

Online Communities for Beginners in Programming

Regardless of the path you have chosen, if you are seriously involved in programming, we recommend
subscribing to specialized online forums, discussion groups and communities, from which you can get
assistance by your colleagues and track the novelties in the software industry.

If you will study programming seriously, surround yourselves with people who are involved in
programming seriously. Join communities of software developers, attend software conferences, go to
events for programmers, find friends with whom you can talk about programming and discuss
problems and bugs, find environment that can help you. In most large towns there are free events for
programmers, a few times a week. In smaller localities you have the Internet and an access to the
entire online community.

Here are some recommended resources that will be useful for your development as a programmer:

• https://softuni.org – official website of SoftUni. In it you will find free (and not only) courses,
seminars, video tutorials and trainings in programming, software technologies and digital
competences.

• https://fb.com/softuni.org – official Facebook page of SoftUni. By it you will learn regarding
new courses, seminars and events related to programming and software development.

• https://introprogramming.info – official website of the books "Programming Basics" with C#
and Java by Dr. Svetlin Nakov and his team. The books examine in-depth programming basics,
basic data structures and algorithms, object-oriented programming, and other basic skills, and
are an excellent continuation for reading after the current book. However, besides reading,
you need to do intense code writing, do not forget that!

• https://stackoverflow.com – Stack Overflow is one of the widest discussion forums for
programmers worldwide, where you will find assistance for any possible question in the world
of programming. If you are fluent in English, look up at StackOverflow and ask your questions
there.

• https://udemy.com – Udemy is one of the biggest marketplaces for technical trainings,
offered free or at affordable prices.

• https://meetup.com/find/tech – look for tech meetups around your city and involve in
communities that you like. Most of the tech meetups are free and newbies are welcome.

Good Luck to All!

On behalf of the entire authors' team, we wish you endless success in the profession and in your life!
We will be really happy if we have helped you get passionate about programming and we have
inspired you to go bravely towards becoming a "software engineer", which will bring you a good job
that you will work with pleasure, give you a quality life and prosperity, as well as amazing perspectives
for development and possibilities for making impressive projects with inspiration and passion.

Sofia, September 1, 2019

https://softuni.org/
https://fb.com/softuni.org
https://introprogramming.info/
https://stackoverflow.com/
https://udemy.com/
https://meetup.com/find/tech

"Programming Basics with C#": Free Book + Video Course

Author: Svetlin Nakov and Team

ISBN: 978-619-00-0902-3

Pages: 400

Language: English

Publisher: Faber, Veliko Tarnovo

Sofia, 2019

Book “Programming Basics with C#” (English)

Book “Programming Basics with C#” (Bulgarian)

Book “Programming Basics with Java” (Bulgarian)

Book “Programming Basics with JavaScript” (Bulgarian)

Book “Programming Basics with Python” (Bulgarian)

Book “Programming Basics with C++” (Bulgarian)

Books “Introduction to Programming with C# and Java”

“Software University” Foundation

SoftUni (Software University)

SoftUni Blog – Learn to Code

SoftUni Judge System – Automated Code Evaluation

Svetlin Nakov – official web site, programming courses and lessons

Tags: programming; book; programming book; book programming; free book; free; e-book; video lessons;
programming video lessons; lessons programming; C#; C# book; book C#; coding; programming code; C# book

basics; C# programming basics; C# programming book; programming basics C# book; C# video lessons; C#
programming lessons; video lessons programming C#; computer programming; programming concepts; basics of
programming; textbook; tutorial; intro C#; CSharp; si sharp book; learn programming; learn C#; lessons C#; C#
lessons; learn coding; learn programming; how to program; coder; programmer; software developer; practical

programming; programming techniques; logical thinking; algorithmic thinking; coding; coding skills; programming
skills; programming language; programming fundamentals; programming first steps; source code; open source;
source code; open source; compiler; debugger; debugging; Visual Studio; IDE; development environment; code
snippets; .NET; .NET Framework; .NET Core; data; data types; variables; variable scope; operators; expressions;

calculations; statements; console; console input / output; console application; text formatting; conditional
statements; if operator; if constructions; if; if-else; switch-case; logical operators; logical AND; logical OR; logical
NOT; loops; while; do-while; for-loop; foreach-loop; nested loops; infinite loops; functions; methods; invoking

methods; parameters; arguments; try-catch; error handling; programming problems, practical problems, problem
solving; problems and solutions; writing code; code testing; exercises; problems; tasks; solutions; programming
guidelines; programming exercises; skillful developer; skillful programmer; high-quality code; naming identifiers;

code formatting; Nakov; Svetlin Nakov; Software University; SoftUni; code camp; coding academy; software
academy; video academy; interactive training; interactive coding course; interactive programming lessons; online

judge; judge system; softuni.org; GUI apps; Web apps; ISBN 978-619-00-0902-3; ISBN 9786190009023

Programming Basics with C# Book – back cover

https://csharp-book.softuni.org/
https://csharp-book.softuni.bg/
https://java-book.softuni.bg/
https://js-book.softuni.bg/
https://python-book.softuni.bg/
https://cpp-book.softuni.bg/
http://introprogramming.info/
http://softuni.foundation/
https://softuni.org/
https://blog.softuni.org/
http://judge.softuni.org/
https://nakov.com/
http://nakov.com/
https://softuni.bg/
http://softuni.bg/
https://csharp-book.softuni.org

	Contents
	Table of Contents
	Preface
	Video: Book + Video Course Overview
	The Book Uses C# and Visual Studio
	Official Textbook at SoftUni
	Who Is This Book Intended for?
	Why Did We Choose C#?
	Learning Resources: Code + Videos + Exercises + Judge
	Programming Is Learned by Writing, Not Reading!
	The Software University (SoftUni)
	Video: SoftUni and SoftUni Judge
	SoftUni: High-Quality Practical Tech Education
	Free Programming Courses at SoftUni
	The SoftUni Interactive Classroom

	The Automated Judge System
	How to Become a Software Developer?
	Video: Become a Software Engineer – 4 Essential Skills
	The 4 Essential Skills of the Software Developers
	Skill #1 – Coding (20%)
	Skill #2 – Algorithmic Thinking (30%)
	Skill #3 – Computer Science and Software Engineering (25%)
	Skill #4 – Programming Languages and Technologies (25%)

	The Programming Language Doesn't Matter!

	More About the Book
	Video: Book Authors and Contributors
	The Story of This Book
	Authors Team
	Dr. Svetlin Nakov – The Leading Author
	Translators Team
	Video Lessons Team

	Official Book Web Site
	The Book in Other Languages: Java, JavaScript, Python, C++
	Udemy Course "Comprehensive Introduction to Programming in C#"
	License and Distribution
	Official Facebook Page of the Book
	Discussion Forum for Your Questions
	Reporting Bugs

	Chapter 1. First Steps in Programming
	Video: Chapter Overview
	Introduction to Coding by Examples
	Computer Programs – Concepts
	Video: Computer Programs, Compilers, Interpreters
	What It Means "To Program"?
	Computer Programs
	Algorithms

	Languages, Compilers, Interpreters and Environments
	Programming Languages
	Compilers
	Interpreters
	Development Environments (IDE)

	Runtime Environments, Low-Level and High-Level Languages
	Video: Runtime Environments and Programming Languages
	Runtime Environments
	Programming Languages: Low-Level and High-Level
	.NET Runtime Environment
	Compilation and Execution of C# Programs

	Computer Programs – Examples
	Video: Computer Programs – Examples
	Example: A Program That Plays the Musical Note "A"
	Example: A Program That Plays Musical Notes
	Example: A Program That Converts USD to EUR
	How to Write a Console Application?

	Development Environments (IDE) and Visual Studio
	Video: Installing and Running Visual Studio
	Installing Visual Studio
	Older Versions of Visual Studio
	Online Development Environments
	Project Solutions and Projects in Visual Studio

	Example: Creating a Console Application "Hello C#"
	Video: Console Application in Visual Studio
	Console App in Visual Studio: Step by Step
	Writing the Program Code
	Starting the Program
	Testing the Program in the Judge System
	How to Register in SoftUni Judge?

	Testing the Programs That Play Notes

	Typical Mistakes in C# Programs
	Video: Typical Mistakes in C# Programs
	Writing Outside if the Main Method
	Wrong Letter Capitalization
	Missing Semicolon
	Missing or Wrong Quotation Mark or Parenthesis

	Exercises: First Steps in Coding
	Video: Chapter Summary
	What We Learned in This Chapter?
	The Exercises
	Problem: Expression
	Video: Problem "Expression"
	Hints and Guidelines
	Testing in the Judge System

	Problem: Numbers from 1 to 20
	Video: Problem "Numbers from 1 to 20"
	Hints and Guidelines
	Testing in the Judge System

	Problem: Triangle of 55 Stars
	Video: Problem "Triangle of 55 Stars"
	Hints and Guidelines
	Testing in the Judge System

	Problem: Calculate Rectangle Area
	Sample Input and Output
	Video: Problem "Rectangle Area"
	Hints and Guidelines
	Test Your Solution
	Testing in the Judge System

	* Problem: A Square Made of Stars
	Sample Input and Output
	Video: Problem "Square of Stars"
	Hints and Guidelines
	Testing in the Judge System

	Lab: Graphical and Web Applications
	Console, Graphical and Web Applications
	Exercises: GUI and Web Applications
	Lab: Graphical Application "Summator" (Calculator)
	Creating a New C# Project
	Adding Text Fields and a Button
	Resizing the Controls and Starting the Application
	Writing the Program Code
	Testing the Application
	Fixing the Bug and Retesting the Application

	Lab: Web Application "Summator" (Calculator)
	Creating a New ASP.NET MVC Project
	Creating a View (Web Form)
	Writing the Program Code
	Testing the Web Application

	Chapter 2.1. Simple Calculations
	Video: Chapter Overview
	Introduction to Simple Calculations by Examples
	The System Console
	Video: The System Console
	The System Console Explained

	Reading Integers from the Console
	Video: Reading Data from the Console
	Video: Reading Integers from the Console

	Example: Calculating a Square Area
	Video: Calculating a Square Area
	Code: Calculating a Square Area
	Testing in the Judge System
	How Does the Example Work?

	Data Types and Variables
	Video: Data Types and Variables
	Examples: Data Types and Variables

	Declaring and Using Variables
	Video: Declaring and using Variables
	Examples: Declaring and using Variables

	Reading Floating Point Numbers from the Console
	Video: Reading Floating-Point Numbers
	Example: Converting Inches into Centimeters
	Testing in the Judge System

	Reading a Text from the Console
	Video: Reading Text from the Console
	Example: Greeting by Name
	Testing in the Judge System

	Printing and Formatting Text and Numbers
	Video: Printing Text and Numbers
	Example: Printing Text and Numbers
	Testing in the Judge System

	Using the Dollar String Interpolation

	Arithmetic Operations
	Video: Arithmetic Operators
	Summing up Numbers: Operator +
	Subtracting Numbers: Operator -
	Multiplying Numbers: Operator *
	Dividing Numbers: Operator /
	Dividing Integers
	Dividing Floating-Point Numbers

	Concatenating Text and Numbers
	Video: Concatenating Text and Numbers
	Examples: Concatenating Text and Numbers

	Numerical Expressions
	Video: Numerical Expressions
	Example: Calculating Trapezoid Area
	Testing in the Judge System

	Example: Circle Area and Perimeter
	Testing in the Judge System

	Example: 2D Rectangle Area
	Testing in the Judge System

	Other Expressions

	Exercises: Simple Calculations
	Video: Chapter Summary
	What We Learned in This Chapter?
	The Exercises
	Empty (Blank) Visual Studio Solution
	Problem: Calculating Square Area
	Hints and Guidelines
	Testing in the Judge System

	Problem: Inches to Centimeters
	Hints and Guidelines
	Writing Program Code and Starting the Program
	Setting Up a Startup Project
	Switching Between Programs
	Testing a Program Locally
	Testing in the Judge System

	Problem: Greeting by Name
	Hints and Guidelines
	Testing in the Judge System

	Problem: Concatenating Text and Numbers
	Hints and Guidelines
	Testing in the Judge System

	Problem: Trapezoid Area
	Hints and Guidelines
	Testing in the Judge System

	Problem: Circle Area and Perimeter
	Input and Output
	Video: Circle Perimeter and Area
	Hints and Guidelines
	Testing in the Judge System

	Problem: Rectangle Area
	Sample Input and Output
	Video: Rectangle Area
	Testing in the Judge System

	Problem: Triangle Area
	Sample Input and Output
	Testing in the Judge System

	Problem: Converter – from C Degrees to F Degrees
	Sample Input and Output
	Testing in the Judge System

	Problem: Converter – from Radians to Degrees
	Sample Input and Output
	Testing in the Judge System

	Problem: Converter – USD to BGN
	Sample Input and Output
	Testing in the Judge System

	Problem: * Currency Converter
	Sample Input and Output
	Testing in the Judge System

	Problem: ** Date Calculations – 1000 Days on the Earth
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Lab: GUI Applications with Numerical Expressions
	Graphical Application: Converter from BGN to EUR
	Video: GUI Converter from BGN to EUR
	Creating a New C# Project
	Adding UI Controls
	Events and Event Handlers
	Writing the Program Code
	Testing the Application

	Graphical Application: * Catch the Button!
	Hints and Guidelines

	Useful Web Sites for C# Developers

	Chapter 2.2. Simple Calculations – Exam Problems
	Simple Calculations – Quick Review
	Reading Numbers from the Console
	Reading an Integer
	Reading a Floating-Point Number

	Printing Text Using Placeholders
	Arithmetic Operators
	Operator +
	Operator -
	Operator *
	Operator /

	String Concatenation

	Exam Problems
	Problem: Training Lab
	Input Data
	Output Data
	Sample Input and Output
	Clarification of the Examples
	Hints and Guidelines
	Idea for Solution
	Choosing Data Types
	Solution – Variant I
	Solution – Variant II

	Testing in the Judge System

	Problem: Vegetable Market
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Idea for Solution
	Choosing Data Types
	Solution

	Testing in the Judge System

	Problem: Change Tiles
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Idea for Solution
	Choosing Data Types
	Reading the Input Data
	Performing the Calculations

	Testing in the Judge System

	Problem: Money
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Idea for Solution
	Choosing Data Types
	Solution

	Testing in the Judge System

	Problem: Daily Earnings
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Idea for Solution
	Choosing Data Types
	Reading the Input Data
	Doing the Calculations
	Printing the Result

	Testing in the Judge System

	Chapter 3.1. Simple Conditions
	Video: Chapter Overview
	Introduction to Simple Conditions by Examples
	Comparing Numbers
	Video: Comparing Numbers
	Examples for Comparing Numbers
	Comparison Operators

	Simple If Conditions
	Video: Simple If / If-Else Conditions
	Example: Excellent Grade
	Testing in the Judge System

	If-Else Conditions
	Example: Excellent Grade or Not
	Testing in Judge System

	About the Curly Braces {} After If / Else

	If-Else Conditions – Examples
	Video: Examples of If-Else
	Example: Even or Odd Number
	Hint and Guidelines
	Testing in the Judge System

	Example: The Larger Number
	Hint and Guidelines
	Testing in the Judge System

	Variable Scope
	Video: Variable Scope
	Variable Scope – Example

	Sequence of If-Else Conditions
	Video: Series of If-Else Checks
	Example: Digits in English
	Testing in the Judge System

	Debugging: Simple Operations with Debugger
	Video: Debugging Code in Visual Studio
	What is "Debugging"?
	Debugging in Visual Studio

	Exercises: Simple Conditions
	Video: Chapter Summary
	What We Learned in This Chapter?
	Empty Visual Studio Solution (Blank Solution)
	Problem: Excellent Grade
	Sample Input and Output
	Creating a New C# Project
	Writing the Program Code
	Testing in the Judge System

	Problem: Excellent Grade or Not
	Sample Input and Output
	Creating a New C# Project and Writing the Code
	Automatic Switching to the Current Project
	Local Execution and Testing
	Testing in the Judge System

	Problem: Even or Odd
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Finding the Greater Number
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Typing a Digit in Words
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Bonus Score
	Sample Input and Output
	Video: Bonus Score
	Hints and Guidelines
	Testing in the Judge System

	Problem: Guess the Password
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Summing Up Seconds
	Sample Input and Output
	Video: Summing Up Seconds
	Hints and Guidelines
	Testing in the Judge System

	Problem: Metric Converter
	Sample Input and Output
	Video: Metric Converter
	Hints and Guidelines
	Testing in the Judge System

	Problem: Numbers from 100 to 200
	Sample Input and Output
	Testing in the Judge System

	Problem: Identical Words
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Speed Assessment
	Sample Input and Output
	Testing in the Judge System

	Problem: Areas of Figures
	Sample Input and Output
	Testing in the Judge System

	Problem: Time + 15 Minutes
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Equal 3 Numbers
	Sample Input and Output
	Testing in the Judge System

	Problem: * Numbers from 0 to 100 as English Words
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Lab: GUI (Desktop) Application – Currency Converter
	Video: Building a GUI App "Currency Converter"
	Creating a New C# Project and Adding Controls
	Configuring the UI Controls
	Events and Event Handlers
	Writing the Program Code

	Chapter 3.2. Simple Conditions – Exam Problems
	Simple Conditions – Quick Review
	Problem: Transportation Price
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Calculating Taxi Rate
	Calculating Transportation Price
	Printing the Output Data

	Testing in the Judge System

	Problem: Pipes in Pool
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Checking the Conditions and Processing Output Data

	Testing in the Judge System

	Problem: Sleepy Tom Cat
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Calculating Working Days
	Calculating Playing Time
	Checking the Conditions
	Processing the Output Data

	Testing in the Judge System

	Problem: Harvest
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Performing the Calculations
	Checking the Conditions and Printing the Output

	Testing in the Judge System

	Problem: Firm
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Auxiliary Calculations
	Checking the Conditions and Printing Output Data

	Testing in the Judge System

	Chapter 4.1. More Complex Conditions
	Video: Chapter Overview
	Introduction to Complex Conditions by Examples
	Nested If-Else Conditions
	The Nested If-Else Construction
	Video: Nested Conditional Statements
	Deep Nesting
	Nested If-Else Conditions – Examples
	Example: Personal Titles
	Sample Input and Output
	Video: Personal Titles
	Solution
	Testing in the Judge System

	Example: Small Shop
	Sample Input and Output
	Video: Small Shop
	Solution
	Testing in the Judge System

	More Complex Conditions
	Logical "AND", "OR" and "NOT"
	The Parenthesis () Operator

	Logical "AND"
	Video: Logical "AND"
	How the && Operator Works?
	Example: Point in a Rectangle
	Sample Input and Output
	Solution
	Testing in the Judge System

	Logical "OR"
	Video: Logical "OR"
	How the || Operator Works?
	Example: Fruit or Vegetable
	Sample Input and Output
	Solution
	Testing in the Judge System

	Logical Negation (NOT)
	Video: Logical "NOT"
	Example: Invalid Number
	Sample Input and Output
	Solution
	Testing in the Judge System

	More Complex Conditions – Examples
	Example: Point on a Rectangle Border
	Sample Input and Output
	Solution
	Testing in the Judge System

	Example: Fruit Shop
	Video: Fruit Store
	Sample Input and Output
	Solution
	Testing in the Judge System

	Example: Trade Fees
	Sample Input and Output
	Video: Trade Fees
	Solution
	Testing in the Judge System

	Switch-Case Conditional Statement
	Video: Switch-Case
	Example: Day of the Week
	Sample Input and Output
	Solution
	Testing in the Judge System

	Multiple Labels in Switch-Cases
	Example: Animal Type
	Sample Input and Output
	Solution
	Testing in the Judge System

	Exercises: More Complex Conditions
	Video: Chapter Summary
	What We Learned in This Chapter?
	Nested Conditions
	Complex Conditions with &&, ||, ! and ()
	Switch-Case Statements

	Problem: Cinema
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Volleyball
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: * Point in the Figure
	Sample Input and Output
	Hints and Guidelines
	Implementation of the Proposed Idea
	Testing in the Judge System

	Lab: * GUI (Desktop) Application: Point and Rectangle
	Creating a New C# Project and Adding Controls
	Configuring the UI Controls
	Handling Events
	Printing Point Position Compared to the Rectangle
	Visualization of the Rectangle and the Point
	Compiling and Testing the Application

	Chapter 4.2. More Complex Conditions – Exam Problems
	More Complex Conditions – Quick Review
	Nested Conditions
	Switch-Case Conditions

	Problem: On Time for the Exam
	Sample Input and Output
	Input Data
	Output Data
	Hints and Guidelines
	Processing the Input Data
	Calculating Exam Start Time and Student Arrival Time
	Checking If the Student Arrived on Time or Late
	Calculating Time Difference
	Printing the Result

	Testing in the Judge System

	Problem: Trip
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Calculations
	Printing the Result

	Testing in the Judge System

	Problem: Operations with Numbers
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Condition for 0
	Condition for Division and Modular Division
	Condition for Sum, Subtract and Multiply
	Using Ternary Operator
	Printing the Output

	Testing in the Judge System

	Problem: Game Tickets
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Calculating Transportation Costs
	Calculating Ticket Costs
	Calculating Total Costs
	Printing the Result

	Testing in the Judge System

	Problem: Hotel Room
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Creating Helper Variables
	Calculating Prices for May and October
	Calculating Prices for June, September, July and August
	Formatting the Output Data
	Printing the Result

	Testing in the Judge System

	Chapter 5.1. Loops (Repetitions)
	Video: Chapter Overview
	Introduction to Simple Loops by Examples
	For Loops (Repeating Code Blocks)
	Video: Simple For-Loops
	Syntax: For-Loop

	Example: Numbers from 1 to 100
	Video: Numbers 1...100
	Hints and Guidelines
	Testing in the Judge System

	Example: Numbers up to 1000, Ending by 7
	Video: Numbers 1...1000 Ending by 7
	Hints and Guidelines
	Testing in the Judge System

	Example: All Latin Letters
	Video: Latin Letters
	Hints and Guidelines
	Testing in the Judge System

	Code Snippet for the for Loop in Visual Studio
	Exercises: Loops (Repetitions)
	Video: Chapter Summary
	What We Learned in This Chapter?
	Blank Solution in Visual Studio
	Problem: Summing up Numbers
	Sample Input and Output
	Video: Summing Numbers
	Hints and Guidelines
	Testing in the Judge System

	Problem: Max Number
	Sample Input and Output
	Video: Largest Number
	Hints and Guidelines
	Testing in the Judge System

	Problem: Min Number
	Video: Smallest Number
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Left and Right Sum
	Sample Input and Output
	Video: Left and Right Sum
	Hints and Guidelines
	Testing in the Judge System

	Problem: Even / Odd Sum
	Sample Input and Output
	Video: Even / Odd Sum
	Hints and Guidelines
	Testing in the Judge System

	Problem: Sum of Vowels
	Sample Input and Output
	Video: Sum of Vowels
	Hints and Guidelines
	Testing in the Judge System

	Problem: Element Equal to the Sum of the Rest
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Even / Odd Positions
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Equal Pairs
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Lab: Turtle Graphics GUI Application
	Video: Turtle Graphics
	What Shall We Build?
	Turtle Graphics – Concepts
	Creating a New C# Project
	Installing Turtle Graphics NuGet Package
	Adding the Buttons
	Implementing the [Draw] Button
	Testing the Application
	Adding Complexity to the Turtle Drawing Code
	Implementing the [Reset] Button
	Implementing the [Show / Hide Turtle] Buttons

	Exercises: Turtle Graphics
	Problem: * Draw a Hexagon with the Turtle
	Problem: * Draw a Star with the Turtle
	Problem: * Draw a Spiral with the Turtle
	Problem: * Draw a Sun with the Turtle
	Problem: * Draw a Spiral Triangle with the Turtle

	Chapter 5.2. Loops – Exam Problems
	For Loops – Quick Review
	Problem: Histogram
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Distributing Numbers in Groups
	Calculating Percentages
	Printing the Output

	Testing in the Judge System

	Problem: Smart Lilly
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Creating Helper Variables
	Calculating Savings
	Formatting and Printing the Output

	Testing in the Judge System

	Problem: Back to the Past
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Iterating through the Years
	Checking for Enough Heritage and Printing the Output

	Testing in the Judge System

	Problem: Hospital
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Calculating the Treated and Untreated Patients

	Testing in the Judge System

	Problem: Division without Remainder
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Logistics
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Chapter 6.1. Nested Loops
	Video: Chapter Overview
	Introduction to Nested Loops by Examples
	Nested Loops – Concepts
	Video: Nested Loops
	Nested Loops – Examples
	Example: Rectangle Made of 10 x 10 Stars
	Video: Rectangle of 10 x 10 Stars
	Hints and Guidelines
	Testing in the Judge System

	Example: Rectangle Made of N x N Stars
	Video: Rectangle of N x N Stars
	Hints and Guidelines
	Testing in the Judge System

	Examples: Square Made of Stars
	Hints and Guidelines
	Testing in the Judge System

	Example: Triangle Made of Dollars
	Video: Triangle of Dollars
	Hints and Guidelines
	Testing in the Judge System

	Example: Square Frame
	Video: Square Frame
	Hints and Guidelines
	Testing in the Judge System

	Exercises: Drawing Figures
	Video: Chapter Summary
	What We Learned in This Chapter?
	Problem: Rhombus Made of Stars
	Video: Rhombus of Stars
	Hints and Guidelines
	Testing in the Judge System

	Problem: Christmas Tree
	Video: Christmas Tree
	Hints and Guidelines
	Testing in the Judge System

	Problem: Sunglasses
	Video: Sunglasses
	Hints and Guidelines
	Printing the Top and Bottom Rows
	Printing the Middle Rows

	Testing in the Judge System

	Problem: House
	Video: Draw a House
	Hints and Guidelines
	The Roof
	The Base
	Reading the Input Data
	Calculating Roof Length
	Printing the Roof
	Printing the Base

	Testing in the Judge System

	Problem: Diamond
	Video: Draw a Diamond
	Hints and Guidelines
	Upper Part
	Lower Part
	Upper and Lower Parts of the Diamond
	Reading the Input Data
	Printing the Top Part of the Diamond
	Printing the Bottom Part of the Diamond

	Testing in the Judge System

	Lab: Drawing Ratings in Web
	Video: Building a Web App "Draw Ratings"
	Ratings – Visualization in a Web Environment
	Creating a New C# Project
	Creating a View Holding a HTML Form
	Adding the DrawRatings(int) Method
	Adding Star Images
	Starting and Testing the Project

	Chapter 6.2. Nested Loops – Exam Problems
	Nested Loops – Quick Review
	Problem: Drawing a Fort
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Calculating and Printing the Roof
	Printing the Body of the Fort
	Printing the Base of the Fort

	Testing in the Judge System

	Problem: Butterfly
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Divide the Figure into Parts
	Printing the Body and the Lower Wing

	Testing in the Judge System

	Problem: "Stop" Sign
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Divide the Figure into Parts
	Printing the Upper Part of the Sign
	Printing the Middle Row and the Lower Part

	Testing in the Judge System

	Problem: Arrow
	Sample Input and Output
	Input Data
	Output Data
	Hints and Guidelines
	Divide the Figure into Parts
	Printing the Body and the Middle Row
	Printing the Lower Part of the Arrow

	Testing in the Judge System

	Problem: Axe
	Sample Input and Output
	Input Data
	Output Data
	Hints and Guidelines
	Divide the Figure into Parts
	Printing the Handle
	Printing the Lower Part of the Axe

	Testing in the Judge System

	Chapter 7.1. More Complex Loops
	Video: Chapter Overview
	Introduction to More Complex Loops by Examples
	For Loop with Step
	Video: Loop with a Step
	Loop with a Step – Explanation
	Example: Numbers 1...N with Step 3
	Testing in the Judge System

	Example: Numbers N...1 in Reverse Order
	Video: Numbers N...1
	Hints and Guidelines
	Testing in the Judge System

	Example: Numbers from 1 to 2^n with a For Loop
	Video: Numbers 1 ... 2^n
	Hints and Guidelines
	Testing in the Judge System

	Example: Even Powers of 2
	Video: Even Powers of 2
	Hints and Guidelines
	Testing in the Judge System

	While Loop
	Video: While Loop
	While Loop – Explanation
	Example: Sequence of Numbers 2k+1
	Testing in the Judge System

	Example: Number in Range [1…100]
	Video: Numbers in the Range [1…100]
	Hints and Guidelines
	Testing in the Judge System

	Greatest Common Divisor (GCD)
	Video: Greatest Common Divisor (GCD)
	The Euclidean Algorithm
	Example: Greatest Common Divisor (GCD)
	Testing in the Judge System

	Do-While Loop
	Video: Do-While Loop
	Example: Calculating Factorial
	Testing in the Judge System

	Example: Summing Up Digits
	Video: Sum of Digits
	Hints and Guidelines
	Testing in the Judge System

	Infinite Loops with Break
	Video: Infinite Loops with Break
	Infinite Loop – Explanation
	The Operator "Break"
	Example: Prime Number Checking
	Video: Prime Number Checking
	Hints and Guidelines
	Prime Checking Algorithm
	Implementation of the Prime Checking Algorithm
	Testing in the Judge System

	Example: Enter an Even Number
	Hints and Guidelines
	Implementation
	Testing in the Judge System

	Nested Loops and Break
	Wrong Implementation
	Correct Implementation
	Testing in the Judge System

	Handling Errors: Try-Catch
	Video: Using Try-Catch
	What is Try-Catch?
	The Try-Catch Construction
	Example: Dealing with Invalid Numbers with Try-Catch
	Enter Even Number – Implementation
	Testing in the Judge System

	Exercises: More Complex Loops
	Video: Chapter Summary
	What We Learned in This Chapter?
	Problem: Fibonacci Numbers
	Sample Input and Output
	Video: Fibonacci Numbers
	Hints and Guidelines
	Testing in the Judge System

	Problem: Numbers Pyramid
	Sample Input and Output
	Video: Pyramid of Numbers
	Hints and Guidelines
	Implementation of the Idea

	Testing in the Judge System

	Problem: Numbers Table
	Sample Input and Output
	Video: Table with Numbers
	Hints and Guidelines
	Implementation of the Idea

	Testing in the Judge System

	Lab: Web Application with Complex Loops
	Problem: Web Application "Fruits Game"
	Video: Fruits Game – ASP.NET MVC Web App
	Fruits Game Explained
	Create New C# Project
	Create Controls
	Prepare Fruits for the View
	Generate Random Fruits
	Add Game Images
	Visualize Fruits
	Change Text in Layout
	Test the Application
	Shooting the Fruits
	Implement the "Fire" Method
	Test the Application Again
	Implement "Game Over"
	Final Testing of the Application

	Chapter 7.2. More Complex Loops – Exam Problems
	More Complex Loops – Quick Review
	Problem: Dumb Passwords Generator
	Sample Input and Output
	Input Data
	Output Data
	Hints and Guidelines
	Reading the Input Data
	Processing the Input Data and Printing Output

	Testing in the Judge System
	Did you Know That…?

	Problem: Magic Numbers
	Input Data
	Output Data
	Sample Input and Output
	Solution using a "For" Loop
	Solution using a "While" Loop
	Writing a While Loop
	Infinite While Loop

	Testing in the Judge System

	Problem: Stop Number
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Special Numbers
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Digits
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Chapter 8.1. Practical Exam Preparation – Part I
	Video: Chapter Overview
	The "Programming Basics" Practical Exam
	Video: The Practical Exam Explained
	The Online Evaluation System (Judge)

	Simple Calculations – Problems
	Problem: Triangle Area
	Video: Triangle Area
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Calculate Triangle Side and Height
	Calculate and Print Triangle Area
	Testing in the Judge System

	Problem: Moving Bricks
	Video: Moving Bricks
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Calculating Bricks per Course
	Calculating and Printing the Needed Courses
	Testing in the Judge System

	Simple Conditions – Problems
	Problem: Point on a Segment
	Video: Point on a Segment
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Calculate the Minimum Distance to the Closest End
	Determining if Point is in or Out the Segment
	Testing in the Judge System

	Problem: Point in a Figure
	Video: Point in a Figure
	Problem Description
	Input
	Output
	Sample Input and Output
	Hints and Guidelines
	Determining the Point Location
	Testing in the Judge System

	Complex Conditions – Problems
	Problem: Date After 5 Days
	Video: Date After 5 Days
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading and Processing the Input Data
	Adding 5 Days
	Printing the Result
	Testing in the Judge System

	Problem: Sums of 3 Numbers
	Video: Sum of 3 Numbers
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Composing a Template for the Solution
	Writing Code in the Template
	Testing in the Judge System

	Simple Loops – Problems
	Problem: Sums with Step of 3
	Video: Sums with Step of 3
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Allocating Numbers and Printing Results
	Testing in the Judge System

	Problem: Sequence of Increasing Elements
	Video: Sequence of Increasing Elements
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data and Creating Working Variables
	Determining Increasing Sequence
	Finding and Printing the Longest Sequence
	Testing in the Judge System

	Drawing Figures – Problems
	Problem: Perfect Diamond
	Video: Perfect Diamond
	Problem Description
	Input
	Output
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Printing the Top Part of the Diamond
	Printing the Bottom Part of the Diamond
	Testing in the Judge System

	Problem: Rectangle with Stars in the Center
	Video: Rectangle with Stars in the Center
	Problem Description
	Input
	Output
	Sample Input and Output
	Reading the Input Data
	Printing the First and the Last Rows
	Printing the Middle Rows
	Adding Stars in the Center of the Rectangle
	Testing in the Judge System

	Nested Loops – Problems
	Problem: Increasing 4 Numbers
	Video: Increasing 4 Numbers
	Problem Description
	Sample Input and Output
	Input
	Output
	Reading the Input Data
	Implementation with 2 Numbers
	Implementation with 4 Numbers
	Testing in the Judge System

	Problem: Generating Rectangles
	Video: Generating Rectangles
	Problem Description
	Sample Input and Output
	Input
	Output
	Reading the Input Data
	Sample Idea for the Solution
	Calculating the Rectangle Area and Printing the Output
	Testing in the Judge System

	Practical Exam Preparation – Summary
	Video: Chapter Summary

	Chapter 8.2. Practical Exam Preparation – Part II
	Types of Exam Problems
	Problem: Distance
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Selecting Data Type for Calculations
	Converting the Input Data
	Helper Variable
	Calculating Travel Distance
	Calculating and Printing the Output

	Testing in the Judge System

	Problem: Changing Tiles
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Flowers Shop
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Separating the Constant Values in Variables
	Reading the Input Data
	Preparing the Program Logic

	Testing in the Judge System

	Problem: Grades
	Input Data
	Output Data
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data and Creating Helper Variables
	Allocating Students into Groups

	Testing in the Judge System

	Problem: Christmas Hat
	Input Data
	Output Data
	Sample Input and Output
	Problem Analysis
	Drawing the Dynamic Part of the Figure

	Testing in the Judge System

	Problem: Letters Combination
	Sample Input and Output
	Input Data
	Output Data
	Reading the Input Data
	Printing All Characters from Start to End
	Printing Combination of 3 Characters

	Testing in the Judge System

	Chapter 9.1. Problems for Champions – Part I
	More Complex Problems on the Studied Material
	Problem: Crossing Sequences
	Example
	Input Data
	Output Data
	Constraints
	Sample Input and Output
	Hints and Guidelines
	Processing the Input
	Generating Tribonacci Sequence
	Generating Numerical Spiral
	Finding Common Number for the Sequences
	Alternative Solution

	Testing in the Judge System

	Problem: Magic Dates
	Sample Input and Output
	Input Data
	Output Data
	Constraints
	Hints and Guidelines
	Loop through Dates
	Calculating Date Weight
	Printing the Output

	Testing in the Judge System

	Problem: Five Special Letters
	Input Data
	Output Data
	Constraints
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Generating All Combinations
	Transforming Combinations into Words
	Removing Repetitive Letters
	Calculating Weight
	Preparing the Output
	Final Touches

	Testing in the Judge System

	Chapter 9.2. Problems for Champions – Part II
	More Complex Problems on the Studied Material
	Problem: Passion Shopping Days
	Input Data
	Output Data
	Constraints
	Sample Input and Output
	Hints and Guidelines
	Processing the Input Data
	Algorithm for Solving the Problem
	Processing Command Symbols
	Formatting the Output

	Testing in the Judge System

	Problem: Numerical Expression
	Example
	Input Data
	Output Data
	Constraints
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Creating Helper Variables
	Defining the Program Structure
	Implementing the Proposed Idea
	Calculating the Sub-Expression Value
	Formatting the Output

	Testing in the Judge System

	Problem: Bulls and Cows
	Input Data
	Output Data
	Constraints
	Sample Input and Output
	Hints and Guidelines
	Reading the Input Data
	Declaring a Flag
	Generating Four-Digit Numbers
	Creating Additional Variables
	Counting the Bulls
	Counting the Cows
	Printing the Output

	Testing in the Judge System

	Chapter 10. Methods
	Introduction by Examples
	What Is a "Method"?
	Simple Methods
	Why Use Methods?
	Declaring Methods
	Calling Methods
	Example: Blank Receipt
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Methods with Parameters
	Using Parameters in Methods
	Example: Sign of an Integer
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Optional Parameters
	Example: Printing a Triangle
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Example: Draw a Filled Square
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Returning a Result from a Method
	Types of Returned Values
	The "Return" Operator
	The "Return" Operator – Example
	The Code After "Return" is Inaccessible

	Using the Returned Value
	Example: Calculating Triangle Area
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Example: Math Power
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Methods Returning Multiple Values
	Declaring a ValueTuple
	Method Returning Multiple Values

	Method Overloading
	Method Signature
	Overloading Methods in C# Programs
	Signature and Return Value Type
	Example: Greater of Two Values
	Sample Input and Output
	Creating the Methods
	Reading the Input Data and Using the Methods
	Testing in the Judge System

	Nested Methods (Local Functions)
	What Is a Local Function?
	Why Use Local Functions?
	Declaring Local Functions

	Naming Methods
	Naming Method Parameters

	Good Practices When Working with Methods
	Code Structure and Formatting

	Exercises: Methods
	What We Learned in This Chapter?
	Defining a Method
	Invoking a Method

	Problem: "Hello, Name!"
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Min Method - Return the Smaller Number
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: String Repeater
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Nth Digit
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Integer to Base
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Notifications
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: Numbers to Words
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Problem: String Encryption
	Sample Input and Output
	Hints and Guidelines
	Testing in the Judge System

	Chapter 11. Tricks and Hacks
	Code Formatting
	The Official C# Code Conventions
	Code Formatting Shortcuts in Visual Studio

	Naming Code Elements
	Naming Projects and Files
	Naming Variables
	Naming – Examples

	Shortcuts in Visual Studio
	Code Snippets in Visual Studio
	Exploring the Existing Code Snippets for C#
	Changing an Existing Snippet
	Saving and Testing the Code Snippet

	Code Debugging Techniques
	Debugging in Visual Studio
	Starting the Program in Debug Mode

	Tricks for C# Developers
	Inserting Variable Values in Strings
	Formatting with 2 Digits After the Decimal Point
	Rounding Numbers
	Other Rounding Methods
	Rounding with a Placeholder
	How to Write a Conditional Statement?
	How to Write a 'For' Loop?

	What We Learned in This Chapter?

	Conclusion
	Developer Skills
	This Book is Only the First Step!
	How to Proceed After This Book?
	Study Software Engineering in SoftUni
	Training Duration in SoftUni
	Becoming a Programmer Takes at Least a Year!
	The Entrance Exam in SoftUni
	The SoftUni Curriculum for Software Engineers
	How Many Hours per Day Does the Training Take?
	SoftUni for People Who Work and Study

	Study Software Engineering in Your Own Way
	Recommended Resources for Developers
	Online Communities for Beginners in Programming
	Good Luck to All!

