
React.js Exam – Furniture System
Exam rules:
· You have 6 hours – from 15:00 to 21:00
· When you are ready, delete the node_modules folder, make sure all dependencies are listed in the package.json file and submit your archived project at https://softuni.bg/trainings/1643/reactjs-fundamentals-june-2017
· There will be no breaks during the exam but you can go to the toilet or to breathe some fresh air outside if you are alone
· Good design is optional. Make sure the site is usable enough but do not spent too much time on HTML & CSS.
· If you have any questions for the following description – ask the trainer, he is @ the back of the room
· Have fun!
Open the server directory, install all its dependencies and run it. It is listening on port 5000. The server uses in-memory database so if you need to restart it for some reason, all the data will be lost and you will need to populate it again.
Create a React application and add authentication
Create a React application and prepare the initial project structure. Install Flux (or other similar framework) and prepare its components. Add authentication and make sure the register, login and logout functionalities work correctly. To register a user, you need to send a POST request to the server on ‘/auth/signup’ with ‘name’, ‘email’ and ‘password’ data (sent as JSON). To login a user, you need to send a POST request to the server on ‘/auth/login’ with ‘email’ and ‘password’ data (sent as JSON). You need to save the user token in your application state. Make sure you validate everything on the client application.
Add statistics (10 points)
Show the total number of users and furniture in the system on the home page. You need to make a GET request to ‘/stats’ in order to retrieve the data.
Add creating of furniture (10 points)
Add a form to create furniture in the system. Each furniture has ‘make’ as string, ‘model’ as string, ‘year’ as number, ‘description’ as string, ‘price’ as number, ‘image’ as string URL and optional ‘material’ as string. Make sure you validate everything on the client application. The data must be sent as POST request to the server on ‘/furniture/create/’. This route is only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks.
Add listing of furniture (10 points)
Add a page where all furniture entries are listed. Since the data from the server comes in pages of 10 entries, your page must have buttons to navigate between the pages. Try to validate the buttons when the page is no longer valid. You need to make a GET request to ‘/furniture/all’ to receive an array of furniture data. Optionally, you can pass a query string parameter ‘page’ to request more data, for example ‘/furniture/all?page=2’. Link each furniture to its details page. Don’t show every piece of information about the furniture on this page. Leave something for the details page. You may add this functionality on the home page.
Searching for furniture (10 points)
Add an option to search for furniture on the listing page. Add a text input and a button. You need to make a GET request to ‘/furniture/all’ with a query string parameter ‘search’ to retrieve the search results, for example ‘/furniture/all?search=chair’. Keep in mind that the ‘page’ and ‘search’ parameters can be combined. For example, the request ‘/furniture/all?page=3&search=chair’ will return the third page of the searched term ‘chair’.
Add furniture details (10 points)
[bookmark: _GoBack]Add a page where all furniture details are shown. You need to make a GET request to ‘/furniture/details/{id}’ to retrieve information about the furniture with the provided id. This route is only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks. Make sure your React application redirects to the login page, if the user tries to open the furniture details page and she’s not logged in.
Add option to add likes and reviews (15 points)
On the furniture details page add an option for the user to put a rating from 1 to 5 and optionally a comment for the current furniture. Each review has ‘rating’ as number between 1 and 5 and ‘comment’ as string data (sent as JSON). You need to make a POST request to ‘/furniture/details/{id}/reviews/create’ in order to create a review. The id is the furniture id the user is reviewing. Additionally, add a like button, which makes a POST request to ‘/furniture/details/{id}/like’. You don’t need to send any data, just update the total likes for the current furniture. The same user cannot like the same furniture twice. Make sure you validate everything on the client application. Both routes are only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks.
Add listing of all reviews (10 points)
On the furniture details page, you need to list all reviews for the current furniture entry. You need to make a GET request to ‘/furniture/details/{id}/reviews’ to receive an array of review data. This route is only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks.
Add profile page (10 points)
Add a profile page where all furniture entries created by the current user are shown. You need to make a GET request to ‘/furniture/mine/’ to receive an array of furniture data. This request does not have paging so you do not have to implement it. The route is only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks.
Add option to delete furniture entries (15 points)
On the profile page, for each furniture entry add a delete button to allow the user to remove a previously added furniture from the system. To delete an entry, you need to make a POST request to ‘/furniture/delete/{id}’. This route is only for authenticated users so you need to send a header with `Authorization` name and value `bearer {token}` in order to pass the authentication checks.
[image:]
Page 2 of 2
Follow us:
© Software University Foundation (softuni.org). This work is licensed under the CC-BY-NC-SA license.
[image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:] [image:]

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image1.jpeg

image20.png

image30.png

image40.png

image50.png

image60.png

image70.png

image80.png

image90.png

image100.png

image110.png

image10.jpeg

