
Developing Playwright 
Framework for REST API 
Testing

Building Framework that people actually want to use



Who am I

▪ Civil Engineer with over 7 years 
of experience

▪ QA Engineer for over 4 years of 
experience

▪ Interests
– Simplifying Complex Topics

– Solving Problems

– Improving products and processes

– Helping others to become better 
professionals



Agenda

▪ The Two Sides of an Application

▪ Where and What Do The Bugs Hide

▪ API Testing
– What is API

– Types of API Testing

▪ The Power of a Unified Tool

▪ Developing Playwright Framework for REST API Testing
– Improving Developer Experience (DX)

– The Abstraction Layer

– The Magic –Custom Fixtures

– Bulletproof –Zod Schema Validation



The Two Sides of a Web 
Application



High-level Architecture of Web App

▪ Front-End – Responsible 
for UI/UX

▪ Back-End – Responsible 
for Business Logic



Communication Between the Two Sides



Where and What Do the 
Bugs Hide?



Front-End vs Back-End Bug Distribution

NOTE: The Data can vary 
significantly due to different 
factors

Front-End
70%

Back-End
30%

BUG DISTRIBUTION

Front-End Back-End



The Nature of Bugs: A Volume vs. 
Severity Profile

LOWER SEVERITY HIGHER SEVERITY

HIGH 
VOLUME

FRONT-END BUGS
(e.g., Visual glitches, CSS misalignments, 

minor usability issues)

FRONT-END BUGS
(e.g., Broken "Checkout" button, 
major browser incompatibility)

LOW 
VOLUME

BACK-END BUGS
(e.g., Minor API performance lag, 

inefficient internal query)

BACK-END BUGS
(e.g., Security vulnerabilities, 
data corruption, system-wide 

outages)



The Escalating Cost of Bug Remediation 
by Development Stage



API Testing





The Importance

▪ Functional Testing

▪ Security Testing 

▪ Integration Testing

▪ Performance Testing



The Power of a Unified 
Tool



Playwright

▪ World-Class Tool for UI Testing

▪ Robust API Testing

▪ Power of a Unified Tool
– Reliability and Speed

– CI/CD Simplification

– Seamless End-to-End Testing

– Developer Experience (DX)



Developing Playwright 
Framework for REST 
API Testing



What we need?

▪ Materials –GitHub Link - https://github.com/idavidov13/SoftUni-PW-
API-Framework-Materials

▪ IDE –Cursor (Windsurf, VS Code)

▪ Application Under Test (AUT) - https://conduit.bondaracademy.com/

▪ Final Repository - https://github.com/idavidov13/SoftUni-PW-API-
Framework-25.08.2025

https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://conduit.bondaracademy.com/
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025


Improving Developer Experience (DX)

▪ Developer Experience – why it is important?

▪ Developer Productivity - how quickly or simply a change can be made to a codebase

▪ Developer Impact - how frictionless it is to move from idea to production

▪ Developer Satisfaction - how the environment, and tools affect developer happiness

▪ How can be Improved

▪ Productivity - using Cursor IDE

▪ Impact - Playwright enables reliable end-to-end testing for modern web apps

▪ Satisfaction - Implementing User Snippets and Custom Fixtures



The Abstraction Layer

1. Create abstracted 
layer of API request, 
which unifies the 
work process

2. Remove 
unnecessary checks 
in the tests

3. Return only what is 
needed in the test





The Magic – Custom Fixtures

▪ Test fixtures are used to establish the environment for each test, giving the 
test everything it needs and nothing else.

▪ List of Built-in Playwright Fixtures





Bulletproof – Zod Schema Validation

▪ Zod is a TypeScript-first 
validation library

▪ By defining schemas, you can 
validate data, from a simple 
string to a complex nested 
object.



Q&A Session



Thank you!

Contacts

▪ LinkedIn – https://www.linkedin.com/in/ivdavidov/

▪ GitHub – https://github.com/idavidov13

▪ Blog – https://www.idavidov.eu

https://www.linkedin.com/in/ivdavidov/
https://github.com/idavidov13
https://www.idavidov.eu/

	Slide 1: Developing Playwright Framework for REST API Testing
	Slide 2: Who am I
	Slide 3: Agenda
	Slide 4: The Two Sides of a Web Application
	Slide 5: High-level Architecture of Web App
	Slide 6: Communication Between the Two Sides
	Slide 7: Where and What Do the Bugs Hide?
	Slide 8: Front-End vs Back-End Bug Distribution
	Slide 9: The Nature of Bugs: A Volume vs. Severity Profile
	Slide 10: The Escalating Cost of Bug Remediation by Development Stage
	Slide 11: API Testing
	Slide 12
	Slide 13: The Importance
	Slide 14: The Power of a Unified Tool
	Slide 15: Playwright
	Slide 16: Developing Playwright Framework for REST API Testing
	Slide 17: What we need?
	Slide 18: Improving Developer Experience (DX)
	Slide 19: The Abstraction Layer
	Slide 20
	Slide 21: The Magic – Custom Fixtures
	Slide 22
	Slide 23: Bulletproof – Zod Schema Validation
	Slide 24: Q&A Session
	Slide 25: Thank you!

