Developing Playwright
- Framework for REST API
Testlng

Building Framework that people to use

— —= — = - e ——a

—

« Civil Engineer with over 7 years
of experience

= QA Engineerfor‘over4year$ of
experience

= |nterests |
- Simplifying Complex Topics
— Solving Problems
— Improving products and processes

— Helping others to become better
professionals '

Agenda

‘The Two Sides of an Application
Where and What Do The Bugs Hide

API Testing
— What is API
— Types of API Testing

The Power of a Unified Tool

Developing Playwright Framework for REST API Testing
- Improving Developer Experience (DX)

— The Abstraction Layer

— The Magic —Custom Fixtures

— Bulletproof — Zod Schema Validation

The Two Sldes of a Web
Appllcatlon '

High-1level Architecture of Web App

E———— < ~ ———

= Front-End — Responsible
for UlJUX S

~« Back-End — Responsible
for Business Logic

Communicatidn Between the Two Sides

ra——— = - —

APPLICATION
_SERVER

Y e

Where and What Do the
Bugs H1de? -

Front-End vs Back-End Bug Distribution

BUG DISTRIBUTION

m Front-End m Back-End

NOTE: The Data can vary
significantly due to different
- factors

The Nature of Bugs: A Volume vs.

Severity Profile

LOWER SEVERITY

FRONT-END BUGS
(e.g., Visual glitches, CSS misalignments,
minor usability issues)

BACK-END BUGS
(e.g., Minor API performance lag,
inefficient internal query)

LOW
VOLUME

FRONT-END BUGS
(e.g., Broken "Checkout" button,
major browser incompatibility)

BACK-END BUGS
(e.g., Security vulnerabilities,
data corruption, system-wide

outages)

The Escalating Cost of Bug Remediation
by Development Stage

o —————— = p———

The Exponentially Increasing Cost of Fixing Bugs

oo
o

3

I
o

™
L
o
=
3
<
2=
L
o
]
—
W
Q
o
2
—
i
&

Requirements Development Testing Production
Development Stage

API Testing

Message Response

—=LL S HTTP/1.1201 Created

Server: Apache/2.2.14 (Win32)

Headers Date: Mon, 18 Dec 2024 10:25:30 GMT
— Content-Length: 88

Content-Type: application/json
Connection: Closed

Empty Line

—

{

"message": "User successfully created",
—— "user": {
"id": 101,
(More data)
1

The Importahce

Functional Testing

Security Testing

Integration Testing

Performance Testing

The Power of a Unlfled
T001

.Playwright'.

—

e 3 —==

" Wbrld}CIass Tool for Ul Testing

Robust API Testing

Power o.f a Unified Tool

- - Reliability and Speed

- CI/CD Simplification
- Seamless End-to-End Testing

_ - Developer Experience (DX)

Developing Playwright
- Framework for REST
API Testlng ‘

What we need?

= - = - —— - —=- =

= ‘Materials — GltHub L|nk https [/github.com/idavidova3/SoftUni- PW-
~API- Framework Materials

. IDE = Cursor (Wlndsurf, VS Code)

= Application Under Test (AUT) - https://conduit.bondaracademy.corh/ |

= Final Repository - https://github.com/idavidova3/SoftUni-PW-API-
Framework-2c.08.202¢ '

https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://github.com/idavidov13/SoftUni-PW-API-Framework-Materials
https://conduit.bondaracademy.com/
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025
https://github.com/idavidov13/SoftUni-PW-API-Framework-25.08.2025

Improving'Déveloper‘Experience (DX)

———— - = - S i

. Developer Experience —why it is important?
= Developer ProdUcti'vity - how quickly or simply a change can be made to a codebase
Déveloper Impact - how frictionless it is to move from idea to production
= Developer Satisfaction - how the environment, and tools affect developer happiness

= How can be Improved |
= Productivity - using Cursor IDE
* Impact - Playwright enables reliable end-to-end testing for modern web‘apps

= Satisfaction - Implementing User Snippets and Custom Fixtures

1.

The Abstraction Layer

Create abstracted
layer of APl request, .
which unifies the = User Interface |/"_:>(:_’_:jg\ A\
work process e

Abstraction Layer in Software Engineering

Remove
unnecessary checks
in the tests

Return only what is
needed in the test

s Backend System |

plain-function.ts N & -

import type { APIRequestContext, APIResponse } from "@playwright/test"; . types.ts
export async function apiRequest({ ;
request, export type ApiRequestParams = {
method,
urt, 2 nethad: *POSTY | “GET™ | “PUT™ -] "“DELETE";
baseUrl, g . 5
body = null, url: string;
}ﬁ?““' : baseUrl?: string;
request: APIRequestContext; , body?: Record<string, unknown> | null;
method: "POST" | "GET" | "PUT" | "DELETE"; 5. ey
url: string; headers?: strlng,
baseUrl?: string; }_.
r

body?: Record<string, unknown> | null;
headers?: string;
}): Promise<{ status: number; body: unknown }> {

lef response: APIResponse; export type ApiRequestResponse<T

const options: { status: number;

data?: Record<string, unknown> | null; body: T;
headers?: Record<string, string>;
b= ik _ o
if (body) options.data = body;
if (headers) {
options.headers = {

R export type 6p1RequestFn = <T = unknown>(
"Content-Type": "application/json", params: AleeqUEStPar‘amS

unknown> = {

b g :
} else { :) => Promise<ApiRequestResponse<T>>;
options.headers = {
"Content-Type": "application/json",

b export type ApiRequestMethods = {
' apiRequest: ApiRequestFn;

14

b
const fullUrl = baseUrl ? “${baseUrl}${url}’ : url; . }
k..

return { status, body: bodyData };

The Magic -

Custom Fixtures

= Test fixtures are used to establish the environment for each test, g|V|ng the
test everythmg it needs and nothing else.

= List of Built-in Playwright Fixtures

Fixture

page

context

browser

browserName

request

Type

Page

BrowserContext

Browser

string

APIRequestContext

Description

Isolated page for this test run.

Isolated context for this test run. The page fixture belongs to this context as well. Learn

how to configure context.

Browsers are shared across tests to optimize resources. Learn how to configure browsers.

The name of the browser currently running the test. Either chromium, firefox or webkit.

Isolated APIRequestContext instance for this test run.

api-request-fixture.ts =

import { test as base } from '@playwright/test'; } >
import { apiRequest as apiRequestOriginal } from './plain-function'; :
import {
ApiRequestFn,
ApiRequestMethods,
ApiRequestParams,
ApiRequestResponse,
} from './api-types';

export const test = base.extend<ApiRequestMethods>({
apiRequest: async ({ request }, use) => {
const apiRequestFn: ApiRequestFn = async <T = unknown>({
method, . test-option.ts
urti,

baselrl, import { test as base, mergeTests, request } from "@playwright/test";

body = null, import { test as apiRequestFixture } from "./api/api-request-fixture";
headers,

}: ApiRequestParams): Promise<ApiRequestResponse<T>> => {

const response = await apiRequestOriginal({ const test = mergeTests(apiRequestFixture);
request,
method,
url,
baseUrl,
body,
headers,

B

const expect = base.expect;
export { test, expect, request };

return
status: response.status,
body: response.body as T,
| .
s : ; : ’

await use(apiRequestFn);
1%
b;

Bulletproofi— Zod Schema Validation

= Zodis aTypeScrlpt flrst ' e
| ‘validation I|brary P S
5 By deﬂnmg s‘chemas, yOU can export const UserSchema = z.object({
validate data, from a simple user: z.object({
string to a complex nested SRl et O

username: z.string(),

bio: z.string().nullable(),
image: z.string().nullable(),
token: z.string(),

})I
o

object.

export type User = z.infer<typeof UserSchema>;

10N

Q&A Sess

[-
L
—
(|
|
——
D
—
Y

WELCOME T0 THE

FROM THE DARK StDE

Thank you!"

Contacts

= ‘LinkedIn — h-tfps’://www.Iihkedin.com/in/ivdavidov/

= GitHub — https://github.com/idavidova3

* Blog- https://www.idavidov.eu

https://www.linkedin.com/in/ivdavidov/
https://github.com/idavidov13
https://www.idavidov.eu/

	Slide 1: Developing Playwright Framework for REST API Testing
	Slide 2: Who am I
	Slide 3: Agenda
	Slide 4: The Two Sides of a Web Application
	Slide 5: High-level Architecture of Web App
	Slide 6: Communication Between the Two Sides
	Slide 7: Where and What Do the Bugs Hide?
	Slide 8: Front-End vs Back-End Bug Distribution
	Slide 9: The Nature of Bugs: A Volume vs. Severity Profile
	Slide 10: The Escalating Cost of Bug Remediation by Development Stage
	Slide 11: API Testing
	Slide 12
	Slide 13: The Importance
	Slide 14: The Power of a Unified Tool
	Slide 15: Playwright
	Slide 16: Developing Playwright Framework for REST API Testing
	Slide 17: What we need?
	Slide 18: Improving Developer Experience (DX)
	Slide 19: The Abstraction Layer
	Slide 20
	Slide 21: The Magic – Custom Fixtures
	Slide 22
	Slide 23: Bulletproof – Zod Schema Validation
	Slide 24: Q&A Session
	Slide 25: Thank you!

