
Unit testing in Java: Mockist vs
classical style

presented by Kristiyan Stoyanov

About me
● 5 years professional experience in Software Engineering

● currently work in Paysafe

● main focus is backend microservices written in Java (using Spring Boot)

● studied in SoftUni

● studying in Sofia University FMI

linkedIn: https://www.linkedin.com/in/kristiyan-stoyanov-395310184/

email: kristiyan.stoyanov99@icloud.com

https://www.linkedin.com/in/kristiyan-stoyanov-395310184/
mailto:kristiyan.stoyanov99@icloud.com

sli.do
#Java-testing

Table of contents
● What is a unit test?

● Why do we need unit tests?

● Best practices while writing tests

● What is Mocking?

● Advantages of Mocking

● Disadvantages of Mocking

● Mockist vs Classical style

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

What is a unit test?
A piece of code that is used to verify that a “unit” of the program behaves as intended.

Unit tests are most commonly a method/function, which can be executed as part of an

automated testing suite.

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Example Unit Test

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Why do we need unit tests?
● spend less time to manually test the behaviour of software

● prevents breaking existing functionality with new changes

● fast and accessible feedback during development

● makes you write better (testable) code

● can be used as documentation

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Characteristics of a good unit test
● small (no IO, no multithreading)

● readable (you should know what the test is checking in a matter of seconds)

● fast (you will be running the unit test suite a LOT of times, unit tests which run

slow will cause developers to run them less often)

● reliable (tests shouldn’t fail at random, if a test is flaky you might be better off

without a test)

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Best practices for writing unit tests
● one assertion per test

● avoid magic values

● write tests during development

● avoid exposing/duplicating implementation logic

● have a consistent naming convention for all tests

● have a consistent formatting convention for all tests (e.g. Arrange Act Assert)

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

What is mocking?
Mocking is a mechanism of creating a “fake” object, which can be used to replace a

dependency of the class, which is under test.

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Example Mocking

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Advantages of Mocking
● helps keep tests small and isolated

● makes tests deterministic

● allows you to verify interactions with the “fake” object

● is fast to write thanks to very well supported frameworks (e.g. Mockito)*

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

The disadvantages of using Mocks (1)
The tests “know” implementation details of the class they are testing.

This is caused by the fact that mocks are described in the class that uses the

dependencies.

Which leads to high coupling of the class, it’s dependencies and it’s tests.

When a change happens in one of the dependencies of the class the test for that class

needs also to change.

Allowing to verify interaction with dependencies also promotes having methods with

side effects and/or void return type.

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

The disadvantages of using Mocks (2)
As mocks are easy to write, this may cause their overuse.

When overusing mocks, your tests become less reliable as they are not testing true

production code.

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Classical style unit tests
● use real objects as much as possible (unless using the real object causes IO,

multithreading or non-determinism)

● verify state instead of behavior (pure functions, no side effects)

● highly decoupled tests from the classes (and their dependencies) which are under

test

● makes TDD easier

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Example Classical Style

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Mockist vs. Classical
● use fake objects

● test behavior and state

● need to know implementation details when

writing tests

● a bug in one class causes only tests for this

class to fail

● lower upfront cost of writing tests, but more

changes might be needed in the future

● use real objects as much as possible

● test state only

● don’t care for implementation details when

writing tests

● a bug in one class causes a ripple in all of its

consumers

● higher upfront cost of writing unit tests, less

changes in the future

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

Questions?

sli.do: #Java-testing

repo link: https://rebrand.ly/mockist-vs-classical

https://rebrand.ly/mockist-vs-classical

