Neural Networks for Images How to see like a human

Yordan Darakchiev iordan93@gmail.com

Machine Learning

- Making a program which performs a task without explicitly programming it
 - Like the way people learn

Seeing new thingsLearning

Neural Network

Neural Network Learning

Convolution

I(0,0)	I(1,0)	I(2,0)	I(3,0)	I(4,0)	I(5,0)	I(6,0)
I(0,1)	I(1,1)	I(2,1)	I(3,1)	I(4,1)	I(5,1)	I(6,1)
I(0,2)	I(1,2)	I(2,2)	I(3,2)	I(4,2)	I(5,2)	I(6,2)
I(0,3)	I(1,3)	I(2,3)	I(3,3)	I(4,3)	I(5,3)	I(6,3)
I(0,4)	I(1,4)	I(2,4)	I(3,4)	I(4,4)	I(5,4)	I(6,4)
I(0,5)	I(1,5)	I(2,5)	I(3,5)	I(4,5)	I(5,5)	I(6,5)
I(0,6)	I(1,6)	I(2,6)	I(3,6)	I(4,6)	I(5,6)	I(6,6)

	H(0,0)	H(1,0)	H(2,0)					
×	H(0,1)	H(1,1)	H(2,1)	=				
	H(0,2)	H(1,2)	H(2,2)					
Filter								

O(0,0)		

Input image

Output image

How about many convolutions?

Convolution Layer

- Many channels
- Many filters (kernels)

Looks just like a "usual" NN!But works perfectly on images!

A Complete Model

- Convolution layers
- Pooling layers
- "Standard" layers

How Deep Can We Go?

- Inception ResNet V2
- Each rectangle is a layer

Fig. 1. Architecture of Inception Resnet V2 Network

How Deep Can We Go?

- Inception ResNet V2
- Each rectangle is a layer

Fig. 1. Architecture of Inception Resnet V2 Network

The Gritty Details

- Activation function
- Hyperparameters
- Batch normalization
- Regularization
- Function optimization
- ... and other "-ations"

The Applications

Image classification & friends

The Applications (2)

Image captioning & generation

The Applications (3)

Keypoint detection, pose estimation, activity recognition

The Applications (4)

Robotic control, autonomous vehicles

In Real Life

- Lots of data
- Data quality
- Finding biases
- Producing metrics
- Fine-tuning models
- ExplainabilityResponsibility

Thank you!