
Heroes of JS World 2024

 - нещо повече от
Front-End Framework
Цветомир Лазаров, CEO @ QualiSage

It’s 2016

Story Time

First Stable React Version
April 201�
� React 15.0.0 release�
� ~390k weekly downloads

November 201�
� ~650k weekly downloads

Major Drawback

Works only client-side

React Weekly Downloads

Mid-year values, approximate

2024 22M

2023 20M

2022 16M

2021 11M

2020 8M

2019 5M

2018 3M

2017 1M

2016 500K

Retrospect

How Does Client-Side Rendering Work?

Client

Server

Empty HTML
Template

Web server / CDN

Browser

JavaScript

Bundle

CSS 
Styles

Page visualized
Render components

Display DOM elements

<div id=”root”/>Components JSX

Retrospect

How Does Client-Side Rendering Work?

Client

Server

Empty HTML
Template

Web server / CDN

Browser

JavaScript

Bundle

CSS 
Styles

Page visualized API Requests

Loading...

Render components

Display DOM elements

<div id=”root”/>Components JSX
JSON Data

Components JSX

Client

Server

Empty HTML
Template

Web server / CDN

Browser

JavaScript

Bundle

CSS 
Styles

Page visualized API Requests

JSON Data

Components JSX

Retrospect

How Does Client-Side Rendering Work?

Render components

Display DOM elements

<div id=”root”/>Components JSX

Retrospect

Client-Side Rendering Does The Job

 Time to first paint and initial interaction is slow.

 User experience is not great.

 But it works for most developers, so why bother?

¯_(ツ)_/¯

?

Why bother?

Think Again

Guillermo Rauch, CEO of Vercel (ex ZEIT)

It’s still 2016

Story Time

React is not doing enough

ZEIT identified the main pain points of the library:

�� UX (User Experience)

Performance SEO

�� DX (Developer Experience)

Setup Configuration Deployment

Guillermo Rauch, CEO of Vercel (ex ZEIT)

Oct 25, 2016

Story Time

ZEIT fixed it and started a revolution

Tsetsi Lazarov, CEO of QualiSage

Hello

About myself

Tsvetomir (Tsetsi) Lazarov

Full-Stack Developer Team Lead CTO CEO

TypeScript

Go PHP ...

Coding as a <hobby/>

React Next.js Node.js

Tsetsi Lazarov, CEO of QualiSage

Hello

About myself

Tsvetomir (Tsetsi) Lazarov

Full-Stack Developer Team Lead CTO CEO

TypeScript

Go PHP ...

Coding as a <hobby/>

React Next.js Node.js

Agenda

What We’ll Learn

History of React

What Is Next.js

History of Next.js

How to Install & Run It

Client-Side Rendering

Server vs Client Components Project Structure App Router

File-Based Routing

Route Groups

What’s New In Next.js 15 The Things I Wished We Had More Time To Talk About

Route Handlers Streaming

Layout & Pages Dynamic Routes Navigation Loading UI Error Handling

Mutating Data Server ActionsFetching Data

Getting started

What is Next.js?

Routing Rendering Data Fetching Styling Optimizations TypeScript

Main Features

Getting started

Installation & Running
Install with pnpm

Run the development server

First things first

Server vs Client Components in Next.js

Client components (this is also how all components worked before the app router)

Client

Server

Next.js Server
Render static HTML
using React’s API

Static HTML
Client Component

JavaScript Instructions

Display DOM elements Hydrate Client Components
UI becomes

interactive

Static HTML Static HTML
JavaScript

Instructions

Browser

First things first

Server vs Client Components in Next.js

Server components

Client

Server

Next.js Server Render RSC Payload Render static HTML Static HTML
Client Component

JavaScript Instructions

Browser

Display DOM elements
Reconcile Client & Server

Components trees
Hydrate Client Components

Static HTML RSC Payload Static HTML
JavaScript

Instructions

RSC Payload

UI becomes
interactive

First things first

Server vs Client Components in Next.js

How to decide?

You need to... Server Component Client Component

Fetch data

Access backend resources directly

Access sensitive information, e.g. access tokens, API keys

Install large dependencies that are needed only for non-interactable content

Add interactivity, e.g. event listeners

Use React hooks like useState, useEffect, etc.

Access the browser API

Use custom hooks that use React hooks or access the browser API

Use class components

First things first

Server vs Client Components in Next.js

Top-level directories and files Routing files Metadata

Next.js�
� app�
� public�
� src�
� next.config.j�
� next-env.d.t�
� middleware.t�
� instrumentation.ts

Tooling�
� .env, .env.�
� .eslintrc.jso�
� tsconfig.jso�
� .gitignor�
� package.jso�
� pnpm-lock.yam�
� node_modules

Common�
� layout.ts�
� page.ts�
� loading.ts�
� error.ts�
� route.ts

Other�
� not-found.ts�
� global-error.ts�
� template.ts�
� default.tsx

� Favico�
� OpenGraph & Twitter Image�
� Sitema�
� Robot�
� Manifest

Taking a closer look

Project Structure

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

every page.tsx defines a route

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Layout = Shared UI

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Root Layout, Nested Layout

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Pages define browseable routes

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

01
<Link> component
HTML anchor tag on steroids.

server client
Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

01
<Link> component
HTML anchor tag on steroids.

server client

02
useRouter hook
Programmatic navigation.

client

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

01
<Link> component
HTML anchor tag on steroids.

server client

02
useRouter hook
Programmatic navigation.

client

03
redirect() function
Redirect to another page.

clientserver

Nuts and bolts

The App Router

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router

 /destination/calabria

 /destination/unknown

 /destination/uk/london

 /destination

Dynamic segment

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router

 /destination/calabria

 /destination/unknown

 /destination/uk/london

 /destination/usa/california/los-angeles

 /destination

Catch-all segment

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Optional catch-all segment

 /destination/calabria

 /destination/unknown

 /destination/uk/london

 /destination/usa/california/los-angeles

 /destination

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
No side effects on URL segments structure

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Loading state for the whole page

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Loading state on only a part of the page? Just wrap in Suspense.

Before we continue...

Let’s talk about Streaming

Revisiting SSR and Hydration

Client

Server

Next.js Server Render RSC Payload Render static HTML Static HTML
Client Component

JavaScript Instructions

Browser

Display DOM elements
Reconcile Client & Server

Components trees
Hydrate Client Components

Static HTML RSC Payload Static HTML
JavaScript

Instructions

RSC Payload

UI becomes
interactive

Streaming

How does streaming work?

Streaming

Client

Server

Next.js Server SSR SSR
Async component within a

Suspense boundary resolves

Data gets streamed from the server whenever it’s available

Render the fallback for
every Suspense boundary

HTML + RSC
Payload +

Instructions

HTML + RSC
Payload +

Instructions

Browser Browser

Render Static HTML +
Reconciliation + Hydration

Swap the fallback with the
streamed data from the server

HTML + RSC Payload +
Instructions

UI becomes
interactive

Streaming

How does streaming work?

Now that we got streaming out of the way...

Let’s go back

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Error boundary for the whole page

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Handle errors only in a specific part of the page? Wrap in ErrorBoundary.

*caveat: error boundaries in React are still implemented with class components

solution: install and use react-error-boundary package

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router
Just like pages, route files define accessible API routes

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router

Available
HTTP Methods
GET

POST

PUT

PATCH

DELETE

HEAD

OPTIONS

File-Based Routing

Layout & Pages

Route Groups

Loading UI Navigation Error Handling

Dynamic Routes

Route Handlers
Server Components

Nuts and bolts

The App Router

Fetching Data

Different Ways Of Fetching Data

01
API Layer
Create API endpoints using Route Handlers.

Suitable for fetching data from the client,

e.g. when using react-query.

02
Server Components
Fetch data directly on the server.

Query the DB directly, or use a 3rd party API
without worrying about exposing tokens.

Let’s explore ->

The recommended approach by the Next.js team

Fetching Data

Different Ways Of Fetching Data

01
API Layer
Create API endpoints using Route Handlers.

Suitable for fetching data from the client,

e.g. when using react-query.

02
Server Components
Fetch data directly on the server.

Query the DB directly, or use a 3rd party API
without worrying about exposing tokens.

?

Fetching Data

Different Ways Of Fetching Data

01
API Layer
Create API endpoints using Route Handlers.

Suitable for fetching data from the client,

e.g. when using react-query.

02
Server Components
Fetch data directly on the server.

Query the DB directly, or use a 3rd party API
without worrying about exposing tokens.

Let’s check it out ->

03
Hybrid Approach
Best of both worlds.

Fetch initially on the server, hydrate the client
and then refetch on demand on the client.

Mutating Data

Server Actions

“use server”

useFormStatus useFormState useOptimistic useTransition

Asynchronous functions Executed on the serverNo need for API endpoints
� Mutate data with just a single functio�
� Invoke from Client or Server components

Not limited to HTML forms
� Invoke from event handlers, e.g. onClic�
� Invoke from useEffect

Revalidating cached data
� revalidatePat�
� revalidateTag

Server Actions

Let’s see them in action
no pun intended

01
Support for React 19 RC
React Compiler, hydration error improvement

02
Caching is opt-in
Nothing is cached by default anymore

03
Partial Prerendering
Still experimental, but looks promising

04
next/after
Execute code after returning a response

What’s New

Next.js 15 Release Candidate

How Time Flies...

What We Didn’t Cover

The documentation is amazing:

Caching

Deployment Middleware Instrumentation Hook Cookies & Headers Parallel Routes

Edge RuntimeInternationalization Accessibility Client-Side Data Fetching With react-query

Intercepting Routes

Turbopack

Turborepo Vercel Vercel Storage Vercel Toolbar Feature Flagging CI/CD & Preview Deployments

Font & Image Optimization Metadata Configuration Testing Authentication

https://vercel.com/guides
https://vercel.com/docs
https://nextjs.org/docs

Tsetsi Lazarov, CEO of QualiSage

Let’s Connect

Drop me a message

Tsetsi Lazarov

linkedin.com/in/thexpand info@qualisage.com

https://github.com/thexpand/heroes-of-js-world-2024
https://www.linkedin.com/in/thexpand/

Time To Get Curious

Q&A Session

The art and science of asking questions is
the source of all knowledge.

Thank You

Until Time

