Math-for-Developers Homework
Problem-1.Some Primes:
The 24th Prime is :89;
The 101st Prime is :547;
The 251st Prime is:1597;
Problem 2.Some Fibonacci Primes:
The 24th Prime :89 is in Fibonacci's numbers at 11th possition;
The 101st Prime:547 is not in Fibonacci's numbers;
The 251st Prime :1597 is in Fibonacci's numbers at 17th possition;
Problem-3.Some Factorials:
100! is :933262154439441526816992388
562667004907159682643816214685929638
952175999932299156089414639761565182
862536979208272237582511852109168640
00000000000000000000000
171! is :124101807021766782342484052
410310399261660557750169318538895180
361199607522169175299275197812048758
557646495950167038705280988985869071
076733124203221848436431047357788996
854827829075454156196485215346831804
429323959817369689965723590394761615
227855818006117636510842880000000000
0000000000000000000000000000000
250! is :323285626090910773232081455
202436847099484371767378066674794242
711282374755511120948881791537102819
945092850735318943292673093171280899
082279103027907128192167652724018926
473321804118626100683292536513367893
908956993571353017504051317876007724
793306540233900616482555224881943657
258605739922264125483298220484913772
177665064127685880715312897877767295
191399084437747870258917297325515028
324178732065818848206247858265980884
882554880000000000000000000000000000
0000000000000000000000000000000000
Problem-4.Calculate Hypotenuse:
1.Catheri: a = 3 and b = 4:
c = \sqrt ( a^2 + b^2 );
c = \sqrt (9 + 16);
c = \sqrt 25;
c = 5;
2.Catheti: a = 10 and b = 12
c = \sqrt ( a^2 + b^2 );
c = \sqrt (100 + 144);
c = \sqrt 244;
c = 15.620499351813;
3.Catheti: a = 100 and b = 250
c = \sqrt ( a^2 + b^2 );
c = \sqrt (10000 + 62500);
c = \sqrt 72500;
c = 269.25824035673;
Problem-5.Numeral System Conversions:
1234d to binary: 1234:2=617(0)
617:2=308(1)
308:2=154(0)
154:2=77 (0)
77:2=38 (1)
38:2=19 (0) ____ 10011010010
19:2=9 (1)
9:2=4 (1)
4:2=2 (0)
2:2=1 (0)
1:2=0 (1)
1234d to hexadecimal: 1234:16=77(2)
77:16=4 (D) ------ 4D2
4:16=0 (4)
1100101b to decimal: 1×2⁶+1×2⁵+0×2⁴+0×2³+1×2²+0×2¹+1×2⁰ = 101
1100101b to Hex: 64
ABChex to decimal:10×16²+11×16¹+12×16⁰ = 2748
ABChex to binary :101010111100
Problem 6.Least Common Multiple:
LCM(1234,3456) :2132352